用户名: 密码: 验证码:
聚γ-谷氨酸的产生菌筛选、发酵及絮凝特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚γ-谷氨酸是一种天然存在的水溶性的多聚氨基酸,具有生物可降解性,可食用且对人体和环境无毒害。近年来被作为生物絮凝剂、增稠剂、药物缓释材料、生物可降解纤维、高吸水性树脂、重金属螯合剂以及化妆品添加剂等被广泛地应用于食品工业、药物生产、化妆品工业及污水处理中,是一种具有极大开发价值和广阔应用前景的多功能新型生物制品。
     本文从超高压灭菌的哈密瓜汁中筛选得到一株聚γ-谷氨酸高产菌株,对其进行初步鉴定,确定为Bacillus sp.B-53。
     通过单因子试验及正交试验分析,得到Bacillus sp.B-53发酵生产聚γ-谷氨酸的最佳培养基组成和培养条件。培养基组成为(g/L):柠檬酸12,甘油80,L-谷氨酸20,硫酸铵7,K_2HPO_4 0.7,MgSO_4·7H_2O 0.5,MnSO_4·H_2O 0.3,CaCl_20.25,FeCl_3·6H_2O 0.02。Bacillus sp.B-53的适宜培养条件为:培养温度为37℃,初始pH值为6.5,种子液培养48h,接种量4%,装液量为50mL/300mL三角瓶,摇床振荡培养时间为96h,转速150rpm。在优化发酵条件下,Bacillus sp.B-53合成聚γ-谷氨酸可达19.12g/L,产量比优化前的12.56g/L提高52.23%。
     通过乙醇、丙酮沉淀及透析处理得到纯化聚γ-谷氨酸,在硅胶薄层层析上显色为单点。对聚γ-谷氨酸的性质研究表明:该物质仅由谷氨酸组成,在212nm处有最大吸收峰;电泳结果表明Bacillus sp.B-53所产聚γ-谷氨酸并非是单一分子量的物质,而是集中在440kDa-669kDa之间的多分子量聚集体;热稳定性试验表明,随着处理温度的升高,聚γ-谷氨酸水溶液在一定的范围内粘度变化不大,聚合物结构比较稳定,在高温下,粘度下降快,聚γ-谷氨酸水解也快,分子量逐渐变小,聚γ-谷氨酸的水解是由谷氨酸链的随机切割引起的;pH值不同,聚γ-谷氨酸的粘度也有差异,在从pH中性调至pH5.0及pH3.0时,粘度分别降低24.58%和97.46%,而从中性调至偏碱性时,粘度变化不明显。
     聚γ-谷氨酸能有效的絮凝多种无机和有机介质。在无Ca~(2+)存在时,以高岭土为絮凝介质其絮凝活性可达67.31%,加入Ca~(2+)(2g/L,以CaCl_2计)时絮凝活性最大,达到90%以上,最佳絮凝pH值为中性。聚γ-谷氨酸作为生物絮凝剂由于其高效、用途广、可生物降解且降解产物对环境无害,而具有远大的应用前景和商业价值。
Poly γ-glutamic acid (γ-PGA) is a water-soluble, biodegradable, elible and non-toxic toward humans and the environment. Theirefore, potential applications of y-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine and water treatment. y-PGA and its derivatives offer a wide range of unique applications including being used as biopolymer flocculants, thickener, humectant, sustained-release material, drug carrier, highly water absorbable hydrogels, heavy metal absorber.
    A bacterium with high γ-PGA productivity was isolated from the cantaloupe juice,This bacterium could be classified as Bacillus sp. B-53.
    The production of y-PGA was greatly influenced by the composition of medium and culture condition. A number of experiments were done to evaluate the culture conditions, such as carbon, nitrogen, mineral salts, medium pH, temperature, time, inoculation amount, seed age and aeration. The results shew the optimum culture conditions were as follows (g/L) : Acetic acid 12, Glycerol 80, L-Glutamate 20, (NH4)2SO4 7, K2HPO4 0.7, MgSO4-7H2O 0.5, MnSO4-H2O 0.3, CaCl2 0.25, FeCl3.6H2O 0.02, initial pH 6.5, temperature 37℃, seed age 48h, inoculation amount 4%, culture time 96h.γ-PGA was purified by ethanol precipitation, acetone precipitation and dialysis. The purified material showed a absorption peak at 212nm, and was only composed of Glu. The Mw could be detected through SDS-PAGE, and its Mw was about a molecular mass between 440kDa with 669kDa. Study on the isolated y-PGA 's property shew that the y-PGA had good stability under 90 癈 and was rapidly hydrolyzed by heating at 100℃,and the hydrolysis of γ-PGA in the aqueous solution by heating was a random chain scission. Maximum viscosity was observed under conditions of neutral pH.
    This bioflocculant y-PGA efficiently flocculated various organic and inorganic suspensions. It flocculated a suspended kaolin suspension without cations, although its flocculating activity was synergistically stimulated by the addition of ca2+ (0.2%) and rose from 67.31% to above 90%.The sunergistic effect of ca2+ was most effective at neutral pH ranges. The high productivity and versatile application of γ-PGA make its development as a new biodegradable harmless bioflocculant economical and advantageous.
引文
[1] Ashiuchi M., Kamei T., Baek D.H., et al. Isolation of Bacillus subtilis (Chungkook-jang) a poly-γ-glutamate producer with high genetic competence. Appl. Microbiol. Biotechnol., 2001a, 57: 764~769.
    [2] Ashiuchi M., Tani K., Soda K. A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336 gene cloning and biochemical analysis of poly-γ-glutamate produced by E. coli clone cells. Biochem. Biophys. Res. Commun., 1999, 263: 6~12.
    [3] Astrid H., Fred B.O., Alexander S. Conversion of the nitrogen content in liquid manure into biomass and poly-glutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiology Letters, 2003, 218: 39~45.
    [4] Bovamick M. J. The formation of extracellular D(-)glutamic acid polypeptide by Bacillus subtilis. J. Biol. Chem, 1942, 145: 415~424.
    [5] Bitter G A., Cromwick A-M., Gross R A. γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC9945a: physiological and biochemical studies. J. Biol. Macromol., 1994, 16: 265~275.
    [6] Borbély M., Nagasaki Y., Borbély J., et al. lBiosynthesis and chemical modification of poly (γ-glutamic acid). Polymer Bull, 1994, 32: 127~132.
    [7] Cheng C., Yoshihiro A., Tokujiro A. Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem., 1989, 53: 2369~2375.
    [8] Cromwick A.M., Gross R A. Investigation by NMR of metabolic routes to bacterial γ-poly (glutamic acid) using 13C labeled citrate and glutamate as media carbon sources. Can. J. Microbio l., 1995 b, 41: 902~909.
    [9] Cromwick A.M., Gross R A. Effect of manganese (Ⅱ) on Bacillus licheniformis ATCC9945A physiology and γ-poly(glutamic acid) formation. Int. J. Biol. Macromol., 1995, 16: 265~275.
    [10] Cromwick A-M., Bitter GA., Gross RA. Effects of pH and aeration on poly(γ-glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng., 1996, 50: 222~227.
    [11] Gardner J M., TroyFA. Chemistry and biosynthesis of the poly(γ-D-glutamate) capsule in Bacillus licheniformis. J. Bio. Chem., 1979, 254: 6262~6269.
    [12] Giannos S A., Shah D., Gross R A., et al. Poly(glutamic acid) produced by bacterial fermentation. In: Novel Biodegradable Microbial polymers (ed.Dawes, E.A.), Kluwer, Netherlands, 1990, 457~460.
    [13] Goto A., Kunioka M. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci.Biotech.Biochem., 1992, 56: 1031~1035.
    [14] Gross R.A. Bacterial γ-poly(glutamic acid). In: Kaplan DL(ed) Biopolymers from renewable resources. Springer, Berlin Heidelberg New York, 1998, pp195~219.
    
    
    [15] He X.B., Wang T.W., Xu H., et al. Review of the esterification processes for biosynthetic poly(glutamic acid). Fine Chemicals, 2002, 19(11): 6~639.
    [16] Ivánovics G., Bruckner V. Chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunitt; die chemische Struktur der Kapselsubstanz des Milzbrandbazillus und der serologisch identischen spezifischen Substanz des bacillus mesentericus. Z Immunittsforsch, 1937, 90: 304~318.
    [17] Kambourova M., Tangney M., Priest EG. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl. Environ. Microbiol., 2001, 67: 1004~1007.
    [18] Ko YH., Gross R A. Effect of glucose and glycerol on γ-poly(glutamicacid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng., 1998, 57: 430~437.
    [19] Kubota H., Matsunobu T., Uotani K., et al. Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem., 1993, 57: 1212~1213.
    [20] Kubota H., Nambu Y., Endo T. Alkaline hydrolysis of Poly(γ-glutamic acid) produced by microorganism. J. Polym. Sci. Chem., 1996, 34: 1347~1351.
    [21] Kunioka M. Properties of hydrogels prepared by-irradiation in microbial poly(γ-glutamic acid) aqueous solution. Kobunshi Ronbunshu, 1993, 50: 755~760.
    [22] Kunioka M. Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis IFO3335 and crosslinking reaction byγ-irradiation of poly(γ-glutamic acid). Stud. Polym. Sci., 1994, 12: 425~432.
    [23] Kunioka M. Biosynthesis of poly(γ-glutamic acid) from L-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biotechnol., 1995, 44: 501~506.
    [24] Kunioka M. Biosynthesis and chemical reactions of poly(γ-glutamic acid) from microorganisms. Appl. Microbiol. Biotechnol., 1997, 47: 469~475.
    [25] Kurane R., Takeda K., Suzuki T. Screening for and characteristics of microbial flocculant. Agric. Biol. Chem., 1986, 50: 2301~2307.
    [26] Leonard C.G., Housewright R.D., Thorne C.B. Effect of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochem. Biophys. Acta, 1958b, 62: 432~434.
    [27] Murao S. On the polyglutamic acid fermentation. Koubunshi, 1969, 16: 1204~1212.
    [28] Nagai T., Koguchi K., Ito Y. Chemical analysis of poly0,-glutamic acid) produced by plasmid-free Bacillus subtilis (natto): evidence that plasmids are not involved in poly(γ-glutamic acid) production. J. Gen. Appl. Microbiol, 1997, 43: 139~143.
    [29] Ogawa Y., Hosoyama H., Hamano M., et al. Purification and properties of γ-glutamyltranspept idase from Bacillus subtilis (natto). Agric. Biol. Chem., 1991, 55: 2971~2977.
    [30] Ogawa Y., Yamaguchi F., Yuasa K., et al. Efficient production of γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermentors. Biosci. Biotech. Biochem., 1997, 61: 1684~1687.
    [31] Oppermann-Sanio F.B., Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganism and biotechnical function. Naturwissenschaften, 2002, 89: 11~22.
    
    
    [32] Peng Y.X., Xu H., Chen G.G., et al. Synthesis and application of new drug carrier polyglutamic acid. Chinese Journal of New Drugs, 2002, 11(7), 515~519.
    [33] Shih I.L., Van Y.T., Chang Y.N., et al. Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme and Microbial Technology, 2002, 31: 213~220.
    [34] Silink M., Reddel R., Bethel M., P B Rowe. J. Biol. Chem., 1975, 250: 5982~5994.
    [35] Suh H.H., Kwon G.S., Lee C.H., et al. Characterization of bioflocculant producted by Bacillus sp. DP-152. J. Ferment. Bioeng., 1997, 84: 108~112.
    [36] Thorne C.B., Gómez C.G., Housewright R.D. Transamination of D-amino acids by Bacillus subtilis. J. Bacteriol., 1955, 69: 357~362.
    [37] Thome C.B., Leonard C.G. Isolation of D- and L-glutamyl polypeptides from culture filtrates of Bacillus subtilis. J. Biol. Chem., 1958, 233: 1109~1112.
    [38] Troy F.A. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus subtilis. Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem., 1973, 248: 305~315.
    [39] Troy F.A. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus subtilis. Characterization and structural properties of the enzymatically synthesized polymer. J. Biol. Chem., 1973, 248: 316~324.
    [40] Ward R.M., Anderson R.E, Dean EK. polyglutamic acid reduction by Bacillus subtilis NRRL B-2612 grown on wheat gluten. Biotechnol. Bioeng., 1963, 5: 41~48.
    [41] Willams W.J., Thorne C.B. Biosynthesis of glutamyl peptides from glutamine by a transfer reaction. J. Biol. Chem., 1954, 210: 203~217.
    [42] Inatsu Y., Kimura K., Itoh Y. Characterization of Bacillus subtilis strains isolated from fermented soybean foods in southeast Asia: comparison with B. subtilis (natto) starter strains. JARQ, 2002, 36(3): 169~175.
    [43] Yamaguchi E, Ogawa Y., Kikushi M., et al. Detection ofγ-polyglutamic acid (γ-PGA) by SDS-PAGE. Biosci. Biotechnol. Biochem., 1996, 60: 255~258.
    [44] Yang G., Chen J., Qu YB., et al. Studies on the charactrization of bacterial poly(γ-glutamic acid). Polymer Materials Science and Engineering, 2002, 18(4): 133~136.
    [45] Yang G., Chert J., Qu YB., et al. Effcts of He-Ne laser irradiation on Bacillus licheniformis of producting poly(γ-glutamic acid). Acta Laser Biology Sinica, 2001, 10(4): 255~260.
    [46] Yang G., Chert J., Qu YB., et al. Studies on theological characteristics of poly(γ-glutamic acid) produced by bacteria. Acta Polymerica Sinica, 2002, 3: 345~348.
    [47] Yang G., Chen J., Qu YB., et al. Effects of metal ions on poly(γ-glutamic acid) Synthesis by Bacillus licheniformis. Chinese Journal of Biotechnology, 2001, 17(6): 706~709.
    [48] Yokoi H., Arima T., Hirose J., et al. Flocculation properties of poly (γ-glutamic acid) produced by bacillus sutilis. J. Ferment. Bioeng., 1996, 82: 84~87.
    [49] Yokoi H., Natsuda O., Hirose J., et al. Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. J. Ferment Bioeng, 1995, 79: 378~380.
    
    
    [50] Yoon S.H., Do J.H., Lee S.Y., et al. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol. Lett., 2000, 22: 585~588.
    [51] You Q.H., Zhang X.M. Biosynthesisand application of poly (γ-glutamic acid). Morden Chemical Industry, 2002, 22(12): 56~59.
    [52] 北京大学生化实验室.生化实验指导.北京,高等教育出版社,1988.
    [53] 东秀珠,蔡妙英等编著.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [54] 胡筱敏,邓述波,牛力东等.一株芽孢杆菌所产絮凝剂的研究[J].环境科学研究,2001,14(1):36~40.
    [55] 江锋,黄晓武,胡勇.有胞外生物高聚物絮凝剂的研究进展(上)[J].给水排水,2002,28(8):83~90.
    [56] 江锋,黄晓武,胡勇.胞外生物高聚物絮凝剂的研究进展(下)[J].给水排水,2002,28(9):88~91
    [57] 李智良,张本兰,裴健.微生物絮凝剂产生菌的筛选及相关废水絮凝效果实验[J].应用与环境微生物学报,1997,3(1):67~70.
    [58] 片山江道(目).高分子材料学.上海:上海科学技术出版社,1982.
    [59] 宋丽贞.生物高分子材料的进展.产业用纺织品,2000,6:1~4
    [60] 王镇,王孔星.几株微生物絮凝剂产生菌的特性研究[J].微生物学报,1995,35(2):121~129.
    [61] 原敏夫(日).特开平11-343 339
    [62] 周德庆.微生物学实验手册[M].上海:上海科技出版社,1983.
    [63] 张新民,游庆红,徐虹,等.生物可降解型聚谷氨酸高吸水树脂的制备.高分子材料科学与工程,2003,19(2):203~205.
    [64] 中国科学院微生物研究所.伯杰细菌鉴定手册.北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700