用户名: 密码: 验证码:
鼓泡式脱硫反应过程试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤为主要动力资源的国家,火电厂用煤量大,约占全国原煤产量的30%。随着我国国民经济的高速发展和能源消耗的增加,大型燃烧设备的数量也在不断增加,从而使得污染物的排放量也呈现每年递增的趋势。同时,随着人民生活水平的提高,人们对环保的要求越来越高,为了把我国二氧化硫污染物控制在一定水平上,国家制定出了更严格的排放标准和相应的措施。由于如目前常规的脱硫技术工艺类似的大多数脱硫工艺价格昂贵,需投入较大的资金,直至目前为止,许多企业对于脱硫治理工作,仍是持观望和等待态度。因此,努力寻求价格低廉和脱硫效果好的脱硫工艺是目前脱硫工作者最为关心的问题之一。
     鼓泡式脱硫工艺是目前比较有前途的独特脱硫工艺,鼓泡式脱硫技术较为简单,在燃用低硫煤的燃烧设备上无论从投资、还是运行成本上都比常规石灰/石膏湿法脱硫技术要少,对在开展脱硫烟气治理而缺乏资金的地区和国家具有较大的潜力。但由于其脱硫工艺过程和工程实践的中还存在许多关键技术问题没有得到较好解决,因而使得该种技术的推广应用大打折扣。因此,本文对鼓泡式脱硫工艺中对关键的技术问题:其反应动力特性进行了试验分析和数值模拟。
     文中在对鼓泡式脱硫工艺中的反应动力特性试验研究上,同时采用双膜模型对脱硫过程进行了数值模拟,模拟计算结果与试验结果基本吻合。研究结果表明:在鼓泡式脱硫反应过程中影响脱硫效率的因素有烟气中SO_2含量、吸收液浓度、气体温度、pH值、喷管浸入深度等。同时还表明:当SO_2浓度在一定范围内增加,脱硫效率增加,超过一定范围后脱硫效率降低;系统运行的最佳pH值范围为8%左右,在运行中应保持pH值>8较为合适;当脱硫效率随喷管浸入深度增加而增加,在运行中一般保持L>200mm较为合适。当脱硫效率对入口烟气温度变化敏感,入口烟气温度越低,脱硫效率越高;吸收液浓度对脱硫效率有影响,在运行中应保持吸收液浓度4.5左右较为合适。
     本文的研究结果为进一步研究鼓泡式脱硫技术的打下了基础。
The Consume of fossil fuel is proportion 30% of total fuel consumption in China, the energy consume crease fleetly with the development of our country economic, the number of large devices of burning coal continuum crease too. So that trend of the emission pollution quantum from burning fossil fuel goes up every year.
    The demand to environment protect is enhancing gradually with our county economic development and population standard of living improve people. And for SO_2 pollution emission is controlled at lower level, the more strict allow emission standard and solution way have been established. Recently, because of most costliness desulphrization technology, many enterprises hold attitude of looking on and waiting for which process of desulphurize to be adopted until now. Therefore it is one of the most concerning with question for engineers engaging with desulphurize process to strive to research a kind of cheap and effective desulphuriz process.
    Bubble desulphurize process is specify one with future other than common process. The technology of bubble desulphurize process is relatively simpleness compared with other. It costs much less, whether at construct investing or at operation cost, than common lime/limestone wet scrubbing process that the bubble process is applied in the boiler burning lower sulphurize coal. It possesses great potential for lack finance counties that bubble process is adopted in clear gas. Hence it is important to study their process and application in industry. Therefore author has developed for bubble process dynamic reaction character and mathematic simulation.
    The experiment research and numerical simulation about bubble scrubbed desulphurization process is gone in the paper. The double films model bubble is adopted for desulphurize process in mathematic simulated. The result of mathematic simulation is coherent almost with result of test practically. The results are shown: In the bubble desuphurize process, the influence factors for efficiency of remove desuphurize are mostly SO_2 concentration, ratio of liquid to fluegas, gas temperature, pH value, the immerge depth of nozzle tube in liquid etc. The result of numerical simulation show when inlet concentration of SO_2 creases at some range, the efficiency of remove desuphurize creases too, but over that range the efficiency decrease, it is appropriate that the system operation would keep pH value great than 8. The efficiency of remove desulphurize is still depended on the immerge depth of nozzle tube in liquid, the deeper
    
    
    
    the immerge depth of nozzle tube in liquid, the higher efficiency of remove desuphurize. It is appropriate that keep immerge depth great than 200mm. the efEciency of remove desulphurize is sensitivity to change temperature of inlet gas, the lower the temperature of inlet gas, the higher the efficiency of remove desuphurize. The ratio of calcium to liquid has influence obviously to the efficiency of remove desuphurize, it is appreciate to keep the ratio about 4.5 in operation.
    The results would be base for research and application bubble scrubbed desulphurization technology.
引文
[1]马大广等编,大气污染控制工程,中国环境科学出版社,北京:1985
    [2]曾汉才,燃烧与污染,华中理工大学出版社,武汉:1992.7
    [3]Ber.Aardo,G.,State gets breath of rfesh air,China Daily,January 12-13,2002
    [4]陈久明,国务院环境保护委员会关于控制酸雨发展的决定,第十九次会议
    [5]赵应团,洁净煤燃烧与脱硫技术应用现状及分析,云南电力技术,2001年第3期
    [6]祝方,燃煤火力发电厂的脱硫,应用能源技术,2001年第2期
    [7]Bu, X.,Study on in-bed desulfurization in a fiuidized bed coal gastfier,Fuel and Energy Abstracts ,Volume: 38, Issue: 2, March, 1997, pp. 93
    [8]何勇,火电厂烟气脱硫讲习班技术报告,能源部科学技术司1992.12
    [9]陶伟强,国内外燃煤电厂脱硫技术的综述,电力学报,2001年第16卷第3期
    [10]郭予超,我国火电厂烟气脱硫现状及展望,华东电力,2001年第9期
    [11]孔火良,燃煤电厂烟气脱硫主要工艺,环境技术,2002年第4期
    [12]冯玲,烟气脱硫技术的发展及应用现状,环境工程,1997年4月,第2期
    [13]蒋少军,燃煤工业锅炉烟气脱硫技术,化学工业与工程技术,1998年第19卷第2
    [14]何红光,炉内喷钙增湿活化脱硫技术实验研究,西安交通大学硕士论文1996.2
    [15]薛德明等,炉内喷钙对锅炉运行特性影响研究,热力发电2002年6期
    [16]姚洪,周建平,炉内喷钙脱硫实验研究,热能动力工程,1997年11月,第6期
    [17]Bemardo, G. ef al. Mu&r, Utilization of wastes derived from fiuidized bedcombustion and desulphuriration of coals as sources of raw materials,Eng. (Modma. Iraly), 2000, 11, (3),359-371.
    [18]刘精今,中小型燃煤锅炉烟气脱硫技术及其工程应用,云南环境科学,1997年9月,第3期
    [19]王淑勤,中小型锅炉石灰脱硫的试验研究,河北电力技术,1997年第4期
    [20]李乐丰,黄岛发电厂烟气脱硫反应塔的改造与完善,山东电力技术,1998年第5期
    [21]金晶,火电厂烟气脱硫工艺的选择,电力环境保护,2001年3月,第1期
    [22]孙华强,中小型老电站烟气脱硫工艺的选择,华东电力,2002年第8期
    [23]周祖飞,湿法烟气脱硫废水的处理,电力环境保护,2002年6月,第2期
    [24]武文江,黄台电厂烟气脱硫工程简介,山东电力技术,2002年第3期
    [25]段建中,氨洗涤法烟气脱硫,中国电力百科全书,中国电力出版社,2001年1月
    [26]Malhotra, S.; Tankhiwale, A.S.; Rajvaidya, A.S.; Pandey, R.A., Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans, Bioresource Technology Volume: 85, Issue: 3, December, 2002, pp. 225-234
    
    
    [27]Davini, Paolo, Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product, Carbon Volume: 41, Issue: 2, February, 2003, pp. 277-284
    [28]Paolo Davini, Flue gas desulphurization by activated carbon fibers obtainedfrom polyacrylonitrile by-product, Carbon 41 (2003) 277-284
    [29]徐正中,磷氨肥法(PAFP)烟气脱硫试验,火电厂脱硫技术资料汇编,电力工业部环境保护办公室,1997年二月
    [30]姚彤,深圳西部电厂海水烟气脱硫工程及示范作用,电力环境保护,2000年,第1期
    [31]白贤祥,海水脱硫系统及其与传统脱硫工艺的对比,华中电力,2002年第4期
    [32]邰德荣,成都电厂电子束烟气脱硫示范工程,中国电力,1998年第11期
    [33]Mor?n, Antonio; Cara, Jorge; Miles, Nick; Shah, Chandu, Biodesulphurizafion of coal: behaviour of trace elements, Fuel Volume: 81, Issue: 3, February, 2002, pp. 299-304
    [34]梅晓燕,中小容量锅炉湿法烟气净化装置及系统优化,动力工程,2001年10月,第5期
    [35]王淑勤,中小型工业锅炉石灰湿式脱硫装置的试验研究,环境工程,1997年12月,第6期
    [36]Dr. Heinz-Georg Beiers, Main Components and Operating Experience》
    [37]Hill, F.F.; Zank, J., Flue gas desulphurization by spray dry absorption, Chemical Engineering and Processing Volume: 39, Issue: 1, January, 2000, pp. 45 - 52
    [38]Wieckowska, Jadwiga, Catalytic and adsorptive desulphurization of gases, Catalysis Today Volume: 24, Issue: 4, July 14, 1995, pp. 405-465
    [39]张可钜,烟气脱硫装置(FGD)在燃煤电厂的应用实绩,中国电机工程学会环保专委会火电厂烟气净化分专业委员会年会论文,1998年11月
    [40]杨道武,我国火电厂脱硫技术的应用及分析,长沙电力学院学报,2002年5月,第2期
    [41]Mircea Ca? rdu, Malvina Baica, Regarding the energy ecologic efficiency of desulphurization and denox systems and installations in thermopower plants, Energy Conversion & Management 41 (2000) 1155±1164
    [42]D.P.burford, Plant Yates ICCT CT-121 demonstration results of parametric testing》
    [43]马双忱等,先进的烟气脱硫工艺—CT—121工艺,电力环境保护,1998年,第1期
    [44]资料,三相流化床烟气脱硫系统研究报告,国家电力公司热工研究院2001.5.5
    [45]胡殿儒等,常规湿法与CT-121脱硫的电耗分析》 热力发电2002年6期第二版
    [46]D. Borah, M.K Baruah, Electron transfer process. Part 2. Desulphurization of organic sulphur from feed and mercury-treated coals oxidized in air at 50, 100 and 150℃, Fuel 79 (2000)1785-1796
    [47]Kuanrong Qiu, Oliver Lindqvist, Tobias Mattisson, Oxidation behaviour of desulphurization
    
    residues from gasification and fuel-rich combustion, Fuel 78 (1999) 225-231
    [48] R. V. Bravo,R. F. Camacho, V. M. Moya, L. A. I. Garc23a,Desulphurization of SO2-N2 mixtures by limestone slurries, Chemical Engineering Science 57 (2002)2047-2058
    [49] I. Lecuyer, S. Bicocchi, P. Ausset and R. Lefevre, physico-chemical characterization and leaching of desulphurization coal fly ash, Waste Management & Research (1996) 14, 15-28
    [50] Cohen, J.; Janovich, I.; Muginstein, A., Utilization of waste heat from a flue gases up-stream gas scrubbing system, Desalination Volume: 139, Issue: 1-3, September 20, 2001, pp. 1-6
    [51] Urashima, K.; Kim, S.J.; Chang, J.S., Characteristics of aerosol particles from corona discharge ammonia radical injection desulphurizafion and denitrification processes for flue gases cleanings, Journal of Aerosol Science Volume: 30, Supplement 1, September, 1999, pp.S849-S850
    [52] Nilgu n Karatepe, Aysegu Ersoy-Meric,boyu, Reha Yavuz, Sadriye Kuc,u kbayrak, Kinetic model for desulphufization at low temperatures using hydrated sorbent, Thermochimica Acta 335 (1999) 127±134
    [53] L-S.范著,气液固流态化工程,中国石化出版社,1993.9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700