用户名: 密码: 验证码:
几种有机难降解污染物的光催化氧化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化技术作为一种高级氧化技术,近年来在有机污染物处理中得到广泛的关注。本文就高浓度染料废水,难降解2,4—二氯苯酚模拟废水以及实际印钞废水为处理对象,采用TiO_2悬浮法进行处理,就催化剂投加量、催化剂晶型、电子受体、起始pH值、反应时间等因素对光催化氧化降解的影响进行探讨。
     实验采用自制的光催化反应器进行实验。研究表明,TiO_2悬浮体系光催化氧化脱色效率与反应体系中TiO_2的投加量、印染废水浓度、光照、电子受体等诸多因素有关;在处理高浓度酸性蓝染料水溶液中,H_2O_2/UV/TiO_2、UV/TiO_2、UV/H_2O_2三种体系,H_2O_2/UV/TiO_2处理AB有较高的处理效率。而单纯提高TiO_2的投加量,由于羟基自由基的产生量很少,并没有显著地提高催化效果。投加H_2O_2少许便可以提高脱色率70%以上。随着起始浓度的降低,脱色率随之增加。并做了简单的机理探讨,研究表明,染色助剂对催化剂分散性,羟基自由基形成等影响是体系脱色率不高的主要因素。
     在处理实际印钞废水中,催化剂的活性特征、用量、以及H_2O_2、Fe~(2+)、Fenton试剂、酸碱性等都对降解有一定的影响,在处理实际印钞废水中,研究了UV/H_2O_2、H_2O_2/Fe~(2+)、UV/H_2O_2/Fe~(2+)/H~+、UV/H_2O_2/Fe~(2+)/Fe~(3+)四种体系。结果表明,UV/H_2O_2/Fe~(2+)/H~+处理印钞废水有更高的处理效率。单纯的光催化氧化,或Fenton试剂法均不及两者结合处理效果好。光催化—Fenton试剂法处理印钞废水CODcr去除率达到50%以上,色度处理效果达到75%以上。
     在处理2,4—二氯苯酚的实验中,首先建立起用紫外分光光度法测定2,4—二氯苯酚的方法。并确定了其可操作性和准确性,确定其可用来对2,4—二氯苯酚进行定量分析;其次UV/TiO_2系统降解2,4—二氯苯酚中,分析了降解速率与H_2O_2加入量,2,4—二氯苯酚的初始浓度、溶液pH值等的影响因素的关系。实验表明:2,4—二氯苯酚初始浓度对光催化氧化的影响可又Langmuir-Hinshelwood方程表示,其光催化反应可用零级动力学来描述。增加H_2O_2加入量可以提高2,4—二氯苯酚降解
    
    速率,但当HZO:浓度达到一定程度时2,4一二氯苯酚降解速率的变化已
    经不是很明显。2,4一二氯苯酚初始浓度越高,UV/HZO:降解越慢。酸
    性条件下,苯酚降解效果最好。碱性条件下,不利于2,4一二氯苯酚的
    降解。
     光催化反应器的研究将是光催化氧化的一个热点,本文就现阶段的
    光催化反应器研究做了一定的分析。并自己研制出一个实验用的光催化
    反应器。
The technique of photocatalysis oxidation is a new kind of water treatment process with great potential application especially in the organic substances degradation for its outstanding effect . This paper mainly investigated the photocatalytic degradation of high concentration dyeing wastewater, 2,4-dicholorophenal simulated wastewater and printingbill wastewater, respectively. The functional mechanism, catalytic activity and the main problems including TiO2 crystalloid, pH value of solution, H2O2, initial organic concentration, electron receptor, metal ion, amount of catalyst and the dispersion situation in the liquid are discussed in details.
    The photocatalytic reactor which is designed by author and manufactured by shanghai organic chemistry research institute is used in this experience. To examine the decoloring efficiency of suspension system, photocatalytic decolorization of a acid dye(Acid Blue 62) was studied as an example . the effect of TiO2 quantity, electron receptor, pH etc and the mechanism were studied in the condition of high concentration dye solution . Among the systems of TiO2/UV/ H2O2, TiO2/UV, UV/ H2O2, TiO2/UV/H2O2 presents the best one to degrade the AB dyeing wastewater. It is found that the decolourization effect only with TiO2 within short time have not been improved while improved up to 70% with the H2O2 input. The lower of the initial AB concentration, the higher the decoloring rate removal efficiency. The dyeing assistants has negative influence on the dispersity of TiO2 particles and the formation of HO, resulting in low decoloring efficiency.
    In the process of the photocatalytic degradation of printingbill , the dosage and characteristic of TiO2, H2O2, Fe2+, Fenton reagent and pH are argued, the photodegradation can be improved in the condition of acid
    
    
    
    in suspension system. The degradation efficiency of pritingbill wastewater by photocatalytic or Fenton reagent is no better than the combination of Fenton reagent and UV illumination.
    Among the systems of UV/H2O2, H2O2/Fe2+ UV/H2O2/Fe2+/H+and UV/ H2O2/ Fe2+/Fe3+, UV/ H2O2/ Fe2+/H+ presents the best one to degrade the pritingbill wastewater . The decoloring rate and CODcr removal efficiency were 75% and 50% respectively.
    The process of the photocatalytic degradation of 2,4-dicholorophenal by TiO2 was studied under high pressure mercury lamp. In order to study the photodegradation dynamics of 2,4-dicholorophenal in water, firstly, to establish the analysis methods of determination of 2,4-dicholorophenal , this part investigates the determination of 2,4-dicholorophenal by ultraviolet spectrophotometry and establishes the analysis methods of determination of 2,4-dicholorophenal by ultraviolet spectrophotometry and ascertain this method to determine the 2,4-dicholorophenal, secondly, to determine the mechanism of 2,4-dicholorophenal simulated water under different conditions, the relationship between the degradation rate and the initial organic concentration was found to follow Langmuir-Hinshelwood model and the result suggested that photocatalytic of 2,4-dicholorophenal was zero-order kinetics. The influences of various parameters were studied.
    Finally , the recent development of photocatalytic reactor is presented and the trend is also predicted.
    Mu Feng (Environmental Science and Engineering ) Supervised by: Prof. ZhuangHuisheng
引文
[1]Shang N, Yu Y. The biotoxicity and color formation results from ozonition of wastewaters containing phenol and aniline. Environ. Sci. Health Part A: Tox. Hazard Subst. Environ. Eng., 2001, 36(3): 383—389
    [2]杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术Ⅰ.高活性,高稳定性的湿式氧化催化剂的研制.水处理技术,1997,23(2):83—88
    [3]孙石,原田吉明,山崎健一.高浓度有机废水的催化湿式氧化的处理试验研究.环境污染与防治,1999,21(1):4—6
    [4]Sihvone M, Jarvenpaa E, Hietanienmi V, et al. Advances in supercritical carbon dioxide technologies. Trends in food science and technology, 1999, (10): 217—222
    [5]胡纪萃.高浓度有机废水治理技术科研现状与发展(第三分册)[M].北京:化学工业出版社,1988,54—69
    [6]L. A. Castillo, Sillet A., Roussy J. et al. Treatment of High Organic-Loaded Industrial Effluents River.Water Science and Technology, 2000, (11): 115—118
    [7]张洪林.难降解有机物的处理技术进展.水处理技术,1998,24(5):259—264
    [8]杨义燕,戴元.络合萃取法处理高浓度有机废水.现代化工,1997,18(3):9—14
    [9]张乃东.HV/Fe_2(C_2O_4)_3/H_2O_2法处理苯胺类废水的研究.哈尔滨工业大学,1999
    [10]Pigllatello J. Dark and Photoassisted Fe~(2+) Catalyzed degradation of Chlorophenoxy Herbicides by Hydrogeneroxide Environ. Sci.Tech., 1992, (26): 944
    [11]Steve K. Johnson, Linda L. Houk, Jianren Feng, Houk, R. S. et al. Electrochemical Inciceration of 4-Chlorophenol and Identification of Products and Intermediates Mass Spectrometry. Environ. Sci. and Technol. 1999, (33):2638—2644
    [12]K. D. Snell, A. G. Keenan. Chloride inhibition of Ethanol Electrooxidation at a Platinum Electrode in Aqueous acid Solution. Electrochemical Acta, 1981, 26(9): 1339—1344
    [13]T. Tzedakis , A. Savall. Electrochemical regeneration of Ce(Ⅳ) for Oxidation of p-Methoxytoluene. Appl. Eletrochemistry, 1997, (27): 589—597
    [14]H.Huser ,J.M.Leger, C.Lamy. Eletrocatalytic Oxidation of 1, 2-propanediol-Ⅱ A kinetic Analysis of its Oxidation on Platinum in Acid Medium. Eletrochemics.Acta, 1988, 33(10): 1359-1365
    [15]Ch. Comninellis , C.Pulgarin. Anodic Oxidation of Phenol for Waste Water Treatment. J. Appl. Electrochemistry, 1991, (21): 703—708
    [16]H. S. Joglekar,. S. D. Samant, J. B. Joshi. Kinetics of Wet Air Oxidation of Phenol and Substituted Phenols. Water Research, 1991, 25(2): 135—145
    [17]赵国方,赵宏斌.有机废液湿式氧化处理的现状与进展.江苏化工,2000,28(5):23—25
    [18]范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展.科学通报,2001,46(4):265—273
    [19]唐玉朝,胡春,王怡中.TiO_2光催化反应机理及动力学研究进展.化学进展2002,5.192—199
    [20]Goslich R, Dillert R, Bahnemann D. Solar water treatment: Principles and
    
    reactors Wat. Sci. Technol. 1997, 35 (4): 137—148
    [21]Litter M I. Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. Appl. Catal. B-environ. 23 (2-3): 1999, 1, 189-114
    [22]Minero C, Pelizzetti E, Malato S. Lanco. J. Solar Energy, 1996, 56(5): 421—428
    [23]王幼平,余家国.溶胶-凝胶工艺制备掺铅 TiO_2纳米薄膜及其光催化性能的研究.中国环境科学,1998,18(3):244—247
    [24]李芳柏,李湘中等.金离子掺杂对二氧化钛光催化性能的影响.化学学报,2001,59(7):1072—1077
    [25]Chen D W, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO_2 suspension. Water Res. 1998, 32 (11): 3223—3234
    [26]Hte chang, Nanmin wu and faqingzhu. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO_2 catalyst. Wat. Res. 2000,34(2): 407-416
    [27]Satoshi Horikoshi, Hisao Hidaka and Nick. serpone Environmental remediation by an integrated microwave/UV illumination method 1 .microwave-assisted degradation of Rhodamine-B dye in Aqueous TiO_2 dispersions. Environ. Sci. Technol. 2002, 36, 1357-1366
    [28]Chen D W, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO_2 suspension Water Res. 1998, 32 (11): 3223-3234
    [29]Fernandez-Ibanez P, Malato S, de las Nieves F J. Relationship between TiO_2 particle size and reactor diameter in solar photoreactors efficiency. Catal. Today ,1999, 54 (23): 195-204
    [30]Okamoto Ken-ichi Yamamoto Y . Tanaka H , and Tataya A.Bull Chem. Soc. Jpn. 1985, 58: 2023—2028
    [31]Liu G M, Li X Z, Zhao J C, et al. Photooxidation pathway, of sulforhodamine-B: Dependence on the adsorption mode on TiO_2 exposed to visible light radiation. Environ. Sci. Technol., 2000, 34(18):3982-3990
    [32]孙奉玉,吴呜,李文创等.二氧化钛的尺寸与光催化化活性的关系,催化学报,1998,19(3):229—233
    [33]Brus L E.Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J.Chem. Phys. 1984, 80:4403-4409
    [34]张延青等.总程平衡技术在即染废水处理中的应用.山东环境,1998(4):20—21
    [35]王振东等.印染废水的污染与控制.环境科学与技术,2001(1):19—23
    [36]李家珍主编.染料染色工业废水处理,化学工业出版社,1—3页,1997
    [37]王平.印染废水处理方法的研究进展.化工环保,1997,17(5):273—277
    [38]李亚新.国外印染废水的电化学处理.给水排水,1999,25(7)42—44
    [39]Lin S H, Peng C F. Treatment of textile wastewater by electrochemical method. War. Res., 1994, 28(2)
    [40]高廷耀编著.水污染控制工程.北京:高等教育出版社,1999
    [41]朱月海.印染废水处理工艺及浅析.给水排水,1999,25(11),34—39
    [42]曾祥文,王志盈.改进混凝气浮处理印染接触氧化废水的研究.西安建筑科技大学学报,1997,29(3):246—249
    [43]张莉等.印染企业清洁生产的管理和发展.纺织导报,2002(1):32—35
    
    
    [42]樊邦棠等.可溶性染料光催化降解研究.环境污染与防治,1989,11(4):16—18
    [43]Begin-Colin S, Cirot T, Le Caer G, et al. Kinetics and Mechanisms of Phase Transformation Induced by Ball-Milling inAnatase TiO_2. Solid State Chem. 2000,141-149
    [44]Guillard C, Disdier J, Hermann J M. et al. Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-cholrophemol. Catal. Today, 1999, 54:217
    [45]于向阳,程继健,杜永鹃等.稀土元素掺杂对TiO_2相组成和光催化性能的影响.玻璃与陶瓷,2000,28(2):15—20
    [46]Peral J. Ollis D F.. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone,1-butanol,butyraldehyde,formaldehyde,and m-xylene oxidation. Catalysis, 1992,136:554—562
    [47]Dibble L.A,Raupp G B.Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams. Environ. Sci. Technol. ,1992,26: 492-495
    [48]郑敏等.印染废水光催化氧化作用机理解析.染整技术,2002(3):42—44
    [49]A. mohey EI-Dein, J. A. Libra and U. Wiesmann. Kinetics of decolorization and mineralization of the azo dye Reactive Black 5 by hydrogen peroxide and UV light. Water Science and Technology, 2001, 44(5): 295-301
    [50]Pignatello J J. Dark and photoassisted Fe~(3+)-catalyzed degradation of chlorophenoxy herbicldes by hydrogen peroxide. Environ. Sci. Technol., 1992, 26(5): 944-951
    [51]Zepp R G, Faust B C, Holgne J. Hydroxyl radical formation in aqueous reactions of iron(Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 1992, 26(2): 313-319
    [52]刘勇弟,王华星,朱亚新.Fenton试剂氧化偶合混凝法处理含酚废水的机理研究.中国环境科学,1994,14(5):341—345
    [53]吕锡武,孔青春.紫外微臭氧处理饮用水中有机优先污染物.中国环境科学,1997,17(4):378—380
    [54]Joseph, J, Pignatello. Dark and photoassisted Fe~(3+)-catalyzed Dégradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environ. Sci. Technol. 1999, 26(5): 944—951
    [55]PARK, T, J, and LEE , K. H. and JUNG, E. J. and KIM. C. W. Removal of refractory Organics and color in pigment wastewater with Fenton oxidation.Water Sci. Technol. 1997, 39(10): 189-192
    [56]Shen, Zhemin and Jia, JinPing. Dye-wastwater treatment effect with three-dimensional activated carbon fiber electrode method and Fenton reagent method .shanghai jiaotong daxue xuebao, shanghai Jiaotong Univ., 2000, 34(11): 1531- 1534
    [57]Koubek E. Oxidation of refractory organics in Aqueous waste streams by hydrogen peroxide and ultraviolet light. U.S.Patent ,401232,1997
    [58]Andrews Catherine C Photooxide treatment of TNT comtaminated wastewater. AD-AO 84684, 1990
    [59]石建敏,李巧玲等.二氧化钛催化降解水溶性分散染料的研究.水处理技术,
    
    2002,4(2),105—107
    [60]秦友兰等.光纤薄膜的制备及理化特性研究.功能材料,2002,33(2):203—205
    [61]张智宏 姚超.固定化二氧化钛对染料溶液的光催化降解.无锡轻工大学学报,2001,20(5):503—505
    [62]Hong C S, Wang Y B, Bush B. Kinetics and products of the TiO_2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998, 36 (7): 1653-1667
    [63]Chen D. W, Ray A. K.. Photodegradation kinetics of 4-nitrophenol in TiO_2 suspension. WATER RES. 1998, 32(11): 3223-3234
    [64]San N, Hatipoglu A, Kocturk G, et al. Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO_2 suspensions. Photoch. Photobio. A, 2001, 139(2-3): 225-232
    [65]Okamoto Ken-ichi Yamamoto Y. Tanaka H and Tataya A Bull. Chem. Soc. Jpn. 1985, 58:2023-2028
    [66]Vorontsov A V, Savinov E N. Chem. Eng., 1998, 70:231-235
    [67]金相灿.有机化合物污染化学.北京:清华大学出版社,1990:250-253
    [68]Kzyohara H. Appl. Env. Micr., 1992, 58(4): 1276-1283
    [69]钱易.环境科学,1986,(2):86—88
    [70]唐森本,王欢畅,葛碧洲等.环境有机污染化学[M].北京:冶金工业出版社,1995
    [71]奚旦立,孙裕生,刘秀英.环境监测(修订版)[M].北京:高等教育出版社,1994.5—7
    [72]张文悦,陈宜宜.高效液相色谱法测定厌氧废水处理液中氮酚的含量.环境污染与防治,1994,16(6):33—35
    [73]林齐平.含酚废水治理技术的进展.水处理技术,1993,19(3):174—179
    [74]重庆建筑工程学院主编.排水工程,第2版.北京:中国建筑工业出版社,1997
    [75]刘喜信.含酚废水的综合利用及处理.化工环保,1983,4:195—197.
    [76]辛兴崇.臭氧氧化法处理含酚废水.吉林石油化工,1987,161-165
    [77]令狐文生.含酚废水的光催化氧化及光电催化氧化处理研究[学位论文].太原:太原理工大学,1996
    [78]Zhang Y, Crittenden J C. Hand D W. et al. Fixed-Bad Photocatalysts for Solar Decontamination of Water. Environ. Sci. Technol., 1994, 28(3): 435
    [79]胡英主编.物理化学(第四版).北京:高等教育出版社,1999,314—317
    [80]Kazuhito Hashimoto, Tonoji Kawai et al. Photocatalytic reactions of hydrocarbons and fossil fuesls with water-hydrogen production and oxidation. Phys. Chem., 1984, 88(10): 4083—4088
    [81]水处理信息报道 2001,5,49
    [82](department of Marine Environmental Engineering, National Kaohsiung Institute of Marne Technology, Kaohsiung, Taiwan). Hazard, Ind, Waste 1999, 31 St, 103-110(English)
    [83]Saltiel C et al. Performance analysis of solar water detixification systems by detailed simulation. (In): ASME-JSESKSES international Solar Energy Conference New York, ASME,1992:21-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700