用户名: 密码: 验证码:
地震模拟振动台的模糊控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服控制系统是地震模拟振动台的核心组成部分。电液振动台以其优良的性价比在实际的工业应用中获得了广泛的应用,一直是应用研究领域关注的一个重点,而伺服控制器作为其控制核心尤显重要。电液伺服系统是非线性系统,用传统的工作点线性化方法设计控制器时,控制效果依赖于线性化精度和所在的工作点。如果工作点发生变化,就必须重新设计控制器参数,甚至调整控制器结构。鉴于此,从智能控制的角度出发进行了控制器的设计,这样可以使控制器的工作区域得到较大程度的扩展。
     提出了本文选题的背景和意义,归纳总结了地震模拟振动台、电液伺服控制技术的研究和发展及国内外现状,阐述了模糊控制的形成、发展历程及其特点和主要应用领域。建立了电液振动台的线性化数学模型,对电液伺服控制系统的动态特性进行了分析,得出了其非线性本质的特点。研究了基于Ziegler-Nichols参数整定经验公式的PID控制策略,并且着重讨论了模糊控制策略。设计了两类控制器,即基于Ziegler-Nichols参数整定经验公式的PID控制器和模糊控制器。利用Matlab/Simulink仿真工具对控制系统的波形再现控制、PID控制器和模糊控制器的控制效果进行了仿真实验,并做了比较。
     振动台智能控制方法的研究是一个崭新的课题,其研究成果必将全面推进振动台控制技术的发展。根据电液振动台中电液伺服控制的需要,提出了一些解决的方法,但要建立一套完整的伺服控制器设计方法,还需进行大量的工作。
Electro-hydraulic servo control system is core part in earthquake simulation shaking table. Electro-hydraulic shaking table has been widely applied to practical industry for its eminent performance-price ratio, which is the focus of attentions in application research fields. And servo-controller as its controlling center is especially significant. Electro-hydraulic servo-system is essentially non-linear control system, which effect of controlling relies on the precision of linearization and the operational point. The parameters or the whole structure of the controller must be redesigned when the operational point changes. So, the design of controller from the angle of intelligent control is presented in this paper to extend greatly the operational space of the controller.
    The background and significance of thesis are introduced. The state-of-the-art research for earthquake simulation shaking table, Electro-hydraulic servo control technology, the developing history and properties of the Fuzzy control are summarized. The linear mathematics model of Electro-hydraulic shaking table is set up. The non-linear characteristic is advanced by analysizing of the dynamic characteristics of Electro-hydraulic servo control system. The PID controller based on Ziegler-Nichols parameters-adjust experiential formula and fuzzy controller is designed according to the characteristic of Electro-hydraulic servo control system and research object. The wave recurrence and control effect for PID controller and Fuzzy controller is simulated and compared using Matlab/Simulink tools.
    The research of intelligent control of shaking table is a new project, which achievement is used for the development of the shaking table control technology. The new resolution method is advanced according to the control requirements of Electro-hydraulic shaking table. However, there is still much work for us to constitute a complete set of servo controller in our future research.
引文
[1] 王占林.液压伺服系统的近期研究发展动向.流体控制工程,1994,1:3-11
    [2] 骆涵秀.电液振动台的发展趋势.试验机与材料实验,1995,6:1-6
    [3] 骆涵秀.试验机的电液伺服系统.机械工业出版社,1991,261-274
    [4] 何晓佳.电液伺服板簧试验机控制策略的研究,硕士学位论文.西安交通大学,1992,25-37
    [5] 丁崇生,何晓佳,王大庆等.高精度高响应电液伺服系统自适应控制的工程实现.机床与液压,1995,(2):72-77
    [6] 汤志勇.神经网络变结构控制及其在电液伺服结构实验系统中的应用,博士学位论文.西安交通大学,1997:17-22
    [7] 王孙安,林廷圻,史维祥.液压伺服控制的新发展.机床与液压,1991,(1):8-14
    [8] 何玉彬,刘燕秋,徐立勤等.电液伺服系统的神经网络在线自学习自适应控制.中国电机工程学报,1998,18(6):434-437
    [9] P.M.FitzSimons, J.J.Palazzolo. Part 1: modeling of A one-Degree-of-Freedom Active Hydraulic MountASME. Journal of Dynamic Systems, Measurement, and Control, 1996, 118 (3): 439-442
    [10] P.M.FitzSimons, J.J.Palazzolo. Part 2: modeling ofA One-Degree-of-Freedom Active Hydraulic Mount. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118 (3): 439-442
    [11] 王珏.电液伺服系统的智能控制.硕士学位论文.重庆大学,1985,34-39
    [12] 刘燕秋.参数自校正Fuzzy-PI控制器及其在电液伺服结构实验系统中的应用,硕士学位论文.西安交通大学,1997,49-57
    [13] 周其节,徐建闽.神经网络控制系统的研究与展望.控制理论与应用,1992,9(6):569-577
    [14] 何玉彬,李新忠.神经网络控制技术及其应用.科学出版社,2000:176-199
    [15] A.R.Plummer, N.D.VaughanRobust Adaptive Control for Hydraulic Servosystems. ASME Journal of Dynamic Systems, Measurement, and Control, 1996,
    
    118 (2): 237-244
    [16] J.E.bobrow, K.lum. Adaptive High Bandwidth Control of Hydraulic Actuator. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118 (4): 714-720
    [17] H.Zhang, RN.Nikiforuk&P.R.Ukrainetz. A Neural Network Approach for MIMO Electro-hydraulic Servosystem Control. Proceedings of the 3rd International Conference on Fluid Power Transmission and Control, Shanghai, China, 1995
    [18] M.C.Shin& Y.R.Sheu. Adaptive Position Control of An Electro Hydraulic Servo Cylinder, Vibration, Control Engineering, Engineering oflndustry, 1991, 34 (3): 370-376
    [19] 王占林.近代液压控制.机械工业出版社,1997,8-16
    [20] 尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域.液压与气动,2001,(6):4-5
    [21] 王正良.微机电液控制技术.大连理工大学出版社,1993,205-214.
    [22] 金钰,胡佑德,李向春.伺服系统设计指导.北京.北京理工大学出版社,2000,146-190.
    [23] 重庆大学自动化系智能控制研究室.仿人智能控制理论研究论文集.重庆大学,1992,28-38.
    [24] 贺仲雄.模糊数学及应用.机械工业出版社,1983
    [25] 诸静等.模糊控制原理及应用.机械工业出版社,1995
    [26] 张文修,梁广锡.模糊控制与系统.西安交通大学出版社,1998,3:150-176
    [27] 戎月莉.计算机模糊控制原理及应用.北京航空航天大学山版社,1995,(4):105-140
    [28] 冯保成.模糊数学实用集粹.中国建筑工业出版社,1991,423-525
    [29] Hans-Jurgen Zimmermann. Fuzzy sets and operations research for decision support decision suppore under uncertainty. Beijing Normal University Press, 2000, 38-80
    [30] Lotfi A. Zadeh. Fuzzy relation equations and their applications to knowledge engineering. Kluwer Academic. 1989, 219-224
    [31] Y.B.HeH.Zhao, Y.Zhu&W.Sheng. Neural Network Self-learning Variable-Robustness Adaptive Tracking Control for Electro-hydraulic Servo System. 3rd International Symposium on Test and Measurement. Xian, 1999
    [32] Schneider, Martin. Nonlinear Motion Control of hydraulically Driven Large Redundant Manipulators. IFAC Proc. on Motion Control, 1995, 269-278.
    
    
    [33] P.M.FitzSimons, J.J.Palazzolo. 1995 Part 2: modeling of A One-Degree-of-Freedom Active Hydraulic Mount, ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118 (3): 439-442
    [34] A.Luo, H.Hun. Intelligent Control for Electro-hydraulic Proportional Position Servo System. Proceedings of the 4th International Conference on Fluid Power Transmission and Control, Hangzhou, China1997, 24-250
    [35] Math Works. MATLAB Version 4.2 Users Guide, 1995
    [36] 吴振顺.液压系统仿真与CAD.哈尔滨工业大学出版社,2000,150-180.
    [37] 张陪强.MATLAB语言演草纸式的科学计算语言.中国科技大学出版社,1995
    [38] Benjamin C. Kuo, Duane C. Hanselman. MATLAB tools for control system analysis and design, Prentice Hall, 1994, 157-168
    [39] 薛定宇.控制系统计算机辅助设计MATLAB语言及应用,清华大学出版社,1996
    [40] 孙斌,赵玉晓.MATLAB在控制系统设计中的应用.微型机与应用,2002.(3):40-41
    [41] 李兵.高响应电液伺服系统动态特性的研究与控制分析,硕士论文.西安交通大学,1991,29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700