用户名: 密码: 验证码:
中频交流反应溅射氧化钽薄膜制备及介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介电膜,是一种重要的电子薄膜。在微电子技术和光电子技术中有着广泛的应用。随着电容器件集成度越来越高,以SiO2为主的介质膜接近极限厚度,难以满足要求。氧化钽薄膜(Ta2O5)因为具有高介电常数和良好的热、化学稳定性,成为最有希望获得实际应用的介电膜。本文主要研究了氧化钽薄膜的制备、电学性能以及改善性能的途径。
    论文采用自行组装的中频交流磁控溅射设备制备了氧化钽薄膜,考察了溅射气体中氧气含量、基底温度等对薄膜成分、结构的影响,并且通过优化工艺参数得到了接近化学计量比的氧化钽薄膜。研究了薄膜的沉积特性。分析了溅射气体中氧气含量和薄膜厚度对折射率的影响及机理。
    本文重点研究了Ta2O5薄膜的电学性能。分析了介电材料的导电机制和击穿原理,并对氧化钽薄膜的导电机制进行测试和研究。结果显示,随着场强的增加,导电机制分别以欧姆定律、肖特基效应、普尔-弗兰凯尔效应,和F-N为主,最后发生F-N击穿。研究了氧气含量、薄膜缺陷、基底粗糙度等因素对氧化钽电学性能的影响。测试得出薄膜的介电常数为20~30之间(10~20kHz),介质损耗因数为0.001(20kHz)。氧化钽薄膜的最佳性能为:当上电极直径为1mm时,击穿强度为2.22MV/cm,漏电流密度在0.5MV/cm低于1×10-8A/cm2;当上电极直径为0.5mm时,击穿场强达到4.0MV/cm,高于文献报导的最高值3.8MV/cm。
    本文还采用减小上电极面积和对基底进行预处理两种方法,制备了具有高击穿场强和低漏电流密度的MIM单元结构,提高了成品率。研究发现,随着MIM结构上电极面积的增大、基底粗糙度增大,MIM的电学性能变差,成品率降低。
    对溅射态的薄膜进行了阳极氧化后理,通过对比试验发现,阳极氧化可以起到填补微孔和使Ta原子充分氧化的作用,增加薄膜的击穿场强,提高薄膜的绝缘性能。
Dielectric thin film was an important kind of electronic thin films, which has wide applications in microelectronic and photo-electronic technology. With the demands of large integration of capacitors, Silicon Oxide (SiO2) has approached its thickness limitation. Tantalum Oxide (Ta2O5) attracts more attentions because of its high dielectric constant, stable thermal and chemical properties. It might become the most promising candidate high constant dielectric thin films applied in industries. The dissertations focus on the preparation, electrical properties of Ta2O5 and how to improve its insulation properties.
    Tantalum oxide films were prepared by self-assembled middle frequency a.c. sputtering system. The contents and microstructure of the films were studies as the functions of oxygen percentage in sputtering gases and substrate temperature. The stoichiometric films were prepared by optimizing processing parameters. The deposition characteristics were studied. The effects and mechanisms of oxygen percentage and thickness on the refractive constant were analyzed.
    The work mainly focuses on the study of electrical properties of Ta2O5. The conduction and breakdown mechanism of the films were tested and studied. The results showed that with the increase of the field strength, the conduction of the films was separately dominated by Ohm's Law, Schottcky Effect, Pool-Frenkel Effect, and Fowler-Nordheim tunneling breakdown. The electrical properties as the function of oxygen percentage, defects in the films, and the roughness of the substrate surface were investigated. The dielectric of the films was 20~30 (10~20kHz), the dielectric loss tangent was 0.001(20kHz). The best result was obtained: the breakdown field was 2.22MV/cm, and the leakage current density was lower than 1×10-8A/cm2 with the top electrode of
    
    1.0mm in diameter; The highest breakdown field was 4.0MV/cm with 0.5mm in diameter, which was higher than 3.8MV/cm reported in other references by the same method.
    The MIM structure of high quality was fabricated by reducing the area of top-electrode and pretreatment on substrates, and the yield was also improved by these two methods. The electrical properties become worse and yield degraded with the larger top-electrode area and rougher substrate.
    The as-deposited tantalum oxide films were post-processed by anodic oxidation. The micropores in the films were filled and Ta atoms were fully oxidized compared to as-deposited films. In addition, these films exhibit greatly improved leakage currents and breakdown field strength.
引文
[1] 曲喜新. 现代介质薄膜. 电子元件与材料, 1996, 15:1-6
    [2] C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater Sci Eng, 1998, R22:268-322
    [3] S. Ezhilvalavan, T. Y. Tseng. Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application-A review. J mat Sci:Mat in Electronics, 1999, 10:9-31
    [4] J.-Y. Kim, A. Garg, E.J. Rymaszewski, et al. High Frequency Response of Amorphous Tantalum Oxide Thin Films. IEEE Trans. Components and Package Technologies, 2001, 24:526-533
    [5] Tomonori Aoyama, Shigehiko Saida, Yasunori Okayama, et al. Leakage Current Mechanism of Amorphous and Polycrystalline Ta2O5 Films Grown by Chemical Vapor Deposition. J. Electrochem. Soc., 1996, 143:977-983
    [6] Tang KS, Lau WS, Samudra GS. Trends in dram dielectrics. IEEE Circuits Devices Mag, 1997, 13:27-34
    [7] Kee-Won Kwon, Chang-Seok Kang, Soon Oh Park, et al. Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM Electron Devices. IEEE Trans Electron Devices, 1996, 43: 919 -923
    [8] Fukushima N, Abe K, Izuha M, et al. Epitaxial (Ba,Sr)TiO3 capacitors with extremely high dielectric constant for DRAM applications. T. IEDM Tech Dig, 1997:257-60
    [9] Zaima S, Furuta T, Koide Y, et al. Conduction mechanism of leakage current in Ta2O5 films on Si prepared by LPCVD. J. Electrochem Soc, 1990, 137:2876-2879
    [10] Samd m.Edlou, Ali Smajkiewicz, and Ghanim A.Al-Jumaily. Optical properties and environmental stability of oxide coatings deposited by reactive sputtering. Applied Optics, 1993, 32:5601-5605
    [11] M. Cid, N. Stem, C. Brunetti, et al. Improvements in anti-reflection coatings for high-efficiency silicon solar cells. Surface & Coatings Technology, 1998, 106:117-120
    [12] Carsten Christensen, Roger de Reus and Siebe Bouwstra. Tantalum oxide thin films as protective coatings for sensors. J. Micromech. Microeng, 1999, 9:113-118
    [13] Tiku, Shiban K., Rustomji, Sam H. Dielectrics for bright EL displays Author Affiliation. IEEE Transactions on Electron Devices, 1989, 36:1947-1952
    [14] Hara, H., Ohta, T. Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor. Sensors and Actuators, B: Chemical, 1996, 32: 115-119
    
    
    [15] C. Chaneliere, S. Four, J.L. Autran, et al. Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si. Microelectronics Reliability, 1999, 39:261-268
    [16] S. Duenas, H. Castan, J. Barbolla, et al. Microelectronics Reliability, 2000, 40:659-662
    [17] Oishi, Tomoji, Nakazawa Tetsuo, Katou, Akira. Preparation and properties of tantalum oxide films by sol-gel method. Electronics & Communications in Japan, Part II: Electronics, 1993, 76:50-59
    [18] K. Kaupo, R. Mikko, M. Raija, et al. Influence of atomic layer deposition parameters on the phase content of Ta2O5 films. J. Crystal Growth., 2000, 212:459-468
    [19] N. RAMA RAO, R. CHANDRAMANI. Tantalum oxide films prepared by unbalanced reactive magnetron sputtering. Journal of materials science letters, 1999, 18:1949-1951
    [20] K. Chen, M. Nielsen, G.R. Yang, et al. Study of Amorphous Ta2O5 Thin Films by DC Magnetron Reactive Sputtering. J. Electron Mater, 1997, 26:397-401
    [21] G. Golan, A. Axelevitch, R. Margolin, et al. Novel approach to sputtered tantalum film resistors with controlled pre-defined resistance. Microelectronics Journal, 2001, 32:61-67
    [22] S.L. Lee, D. Windover, M. Audino, et al. High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation. Surface and Coatings Technology, 2002, 149:62-69
    [23] Ke Chen, Yang, G.R., Nielsen M., et al. X-ray photoelectron spectroscopy study of Al/Ta2O5 and Ta2O5/Al buried interfaces. Applied Physics Letters, 1997, 70:399-404
    [24] Ke Chen, M. Nielsen, E. Rymaszewski, et al. Study of tantalum oxide thin film capacitors on metallized polymer sheets for advanced packaging applications. IEEE Trans. CPM Par-B, 1997, 20:117-122
    [25] J.-Y. Kim, M.C. Nielsen, E.J. Rymaszewski, et al. Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering. J. Appl. Phys., 2000, 87:1448-1452
    [26] S. Duenas, H. Castan, J. Barbolla. DLTS and conductance transient investigation on defects in anodic tantalum pentoxide thin films. Journal of materials science:Materials in electronics, 2001, 12:317-321
    [27] B.R. Joose and H.J. Viljoen. A study of piezoelectric orthorhombic Ta2O5. J. Mater. Res., 1998, 13:475-482
    
    
    [28] R. M. Fleming, D. V. Lang, C. D. W. Jones, et al. Defect dominated charge transport in amorphous Ta2O5 thin films. J. Appl. Phys., 2000, 88:850-862
    [29] Autran Jean-Luc, Devine Roderick, Chaneliere Christophe, et al. Fabrication and characterization of Si-MOSFET's with PECVD amorphous Ta2O5 gate insulator. IEEE Electron Device Letters, 1997, 18:447-449
    [30] C. Chaneliere, S. Four, J.L. Autran, et al. Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si. Microelectronics Reliability, 1999, 39:261-268
    [31] Peng-Heng Chang, Hung-Yu Liu. Structures of tantalum pentoxide thin films formed by reactive sputtering of Ta metal. Thin Solid Films, 1995, 258:56-63
    [32] S. Ezhilvalavan, Tseung-Yuen Tseng. Electrical properties of Ta2O5 thin films deposited on Cu. Thin Solid Films, 2000, 360:268-273
    [33] S. Ezhilvalavan, Tseung-Yuen Tseng. Conduction mechanisms in amorphous and crystalline Ta2O5 thin films. Journal of Applied Physics, 1998, 83:4797-4801
    [34] T.Dimitrova, K.Arshak, E.Atanassova. Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films, 2001, 381:31-38
    [35] P.V. Kelly, M.B. Mooney, J.T. Beechinor, et al. Ultraviolet Assisted Injection Liquid Source Chemical Vapour Deposition (UVILS-CVD) of Tantalum Pentoxide. Advanced Materials for Optics and Electronics, 2000, 10:115-122
    [36] Yoshiko Takahara, Junko N. Kondo, Tsuyoshi Takata, et al. Mesoporous Tantalum Oixde. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition. Chem. Mater. 2001, 13:1194-1199
    [37] Junko N.Kondo, Yoshiko Takahara, Daling Lu, et al. Mesoporous Ta Oixde. 2. Improvement of the Synthetic Method and Observation of Mesostructure Formation. Chem Materi. 2001, 13:1200-1206
    [38] HUANG Huifen(黄蕙芬). 具有优良绝缘性能的Ta2O5介质膜. 东南大学学报,1999,29(6):36-39
    [39] 黄蕙芬. MIM薄膜二极管Ta2O5绝缘膜的AFM分析及其I-V特性研究. 固体电子研究与进展,1999,19(4):372-376
    [40] 黄蕙芬,庄大明,张浩康,刘云峰.用于有源矩阵液晶显示的Ta-Ta2O5-Ta MIM薄膜二极管. 真空电子技术,1999,1:15-17
    [41] 黄蕙芬,唐泽荣,钟锐,张浩康. 热处理对MIM薄膜二极管Ta2O5绝缘膜微结构及其I-U特性的影响. 真空科学与技术,1999,19(6):461-465
    [42] 杜春雷,苗景歧. Ta2O5平面波导湿度传感器的研究. 光学学报,1994,14(6): 662-666
    
    
    [43] S.K. Zhang, Z.W. Fu, L.Ke, et al. Properties of interface states at Ta2O5/n-Si interfaces. J. Appl. Phys., 1998, 84:335-338
    [44] ZHANG Shengkun, FU Zhengwen, KE Lian, et al. C-V and DLTS studies of Al/Ta2O5/n-Si structures with Ta2O5 thin films deposited by pulsed laser deposition. Progress in natural Science, 1998, 8:243-248
    [45] Sung-Dong cho, Kyung-wook Paik. Study on the amorphous Ta2O5 thin film capacitors deposited by dc magnetron reactive sputtering for multichip module applications. Materials Science and Engineering, 1999, B67:108-112
    [46] S. Schiller, U. Heissig, K. Steinfelder et al. REACTIVE d. c. SPUTTERING WITH THE MAGNETRON-PLASMATRON FOR TANTALUM PENTOXIDE AND TITANIUM DIOXIDE FILMS. Thin solid Films, 1979, 63:369-375
    [47] Jin-Young Kim. The Deposition and Characterization of High Dielectric Constant Films Prepared by Pulsed Reactive DC Magnetron Sputtering Technique:[The thesis for DOCTOR of PHILOSOPHY]. USA, Troy, New York: Rensselaer Polytechnic Institute, 2000
    [48] K. Chen, G. R. Yang, M. Nielsen, et al. Study of Tantalum Oxide Thin Film Capacitors on Metallized Polymer Sheets for Advanced Packaging Applications. Appl. Phys. Lett. 1997, 70:397-401
    [49] E. Reith and P.J. Ficalora. REACTIVE SPUTTERING OF TANTALUM OXIDE: COMPOSITIONAL UNIFORMITY, PHASES, AND TRANSPORT MECHANISMS. J. Vac. Sci. Technol. 1983, 1:1362-1369
    [50] 曲善新. 固态介质薄膜的电击穿场强. 电子元件与材料,1999,18(6):27-30
    [51] Neumann H, Arlt G. Maxwell-Wagner relation and degradation of SrTiO3 and BaTiO3 ceramics. Ferroelectrics, 1986, 69:179-186
    [52] Waser R, Baiatu T, Hardtl K H. DC electrical degradation of perovskite-type titanates:Ⅰ, ceramics. J Am Ceram Soc, 1990, 73:1645-1653
    [53] Waser R, Baiatu T, Hardtl K H. DC electrical degradation of perovskite-type titanates:Ⅱ, single crystals. J Am Ceram Soc, 1990, 73:1654-1662
    [54] 金维芳. 电介质物理学. 北京:机械工业出版社,1995.41-120
    [55] 李翰如. 电介质物理导论. 四川:成都科技大学出版社,1990.50-90
    [56] 张良莹,姚熹. 电介质物理. 西安:西安交通大学出版社,1991.243-354
    [57] 孙目珍. 电介质物理基础. 广州:华南理工大学出版社,2000.143-190
    [58] R.科埃略,B.阿拉德尼兹. [张冶文,张玲译]. 北京:科学技术出版社,2000.162-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700