用户名: 密码: 验证码:
原位TiC_p/Fe复合材料的制备工艺优化及二次加工
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用反应铸造的方法,利用感应加热、坩锅熔炼及使用覆盖剂保护,制备
    原位TiC_p/Fe复合材料。利用光学显微镜、XRD、SEM等测试手段对复合材料
    的微观组织和相结构进行了分析和研究。对复合材料的制备工艺及工艺参数进
    行了系统的试验;在优化工艺的基础上,初步探讨了TiC颗粒在Fe-Ti-C熔体中
    的形成机制;对TiC_p/Fe复合材料在不同热处理工艺下的基体组织与性能进行了
    比较分析;对复合材料的机加性能和可焊性进行了试验研究。
    通过正交试验设计,摸索出了熔炼制备原位TiC_p/Fe复合材料的优选工艺
    方案为:w_C=2.8%,w_(Si)=1.0%,w_(Ti)=8.0%,反应温度为1650℃,保温10min。
    得到复合材料性能:HRC为46.8,α_k为14.25J·cm~(-2);铸态组织为:在珠光体
    基体上,均匀分布着大量细小弥散的TiC颗粒。
    根据热力学及动力学分析,认为在碳颗粒界面处TiC的形核率很高,形核
    驱动力足以在正常的熔炼温度下形成众多的小晶核;熔体中TiC颗粒的合成可
    分为形核与长大两个阶段,其形核机制为:首先活性Ti原子包围C,溶入合金
    中的Ti与C在碳表面形成一复杂反应中间层,随着反应进行,Ti和C颗粒不
    断减少,生成的TiC不断弥散分布于熔体中;其长大过程伴随着TiC颗粒的相
    互堆砌、聚集和形态规则化。
    通过不同的热处理工艺可明显改变原位TiC_p/Fe复合材料的基体组织,但不
    改变TiC增强相的形态、尺寸及数量。退火处理使材料的硬度降低,韧性提高,
    便于机械加工;淬火+低温回火处理使材料的强度和硬度提高,而韧性无明显的
    降低;采用等温淬火工艺,可使TiC_p/Fe复合材料具有最好的综合机械性能。
    在本试验条件下,原位TiC_p/Fe复合材料切削加工时的切削力与45~#钢相比
    要大60N,切削温度要高90℃,加工表面粗糙度与45~#钢相近;TiC陶瓷颗粒使
    原位TiC_p/Fe复合材料切削加工时的切削力增大、切削温度增高,对加工表面粗
    糙度影响不大;原位TiC_p/Fe复合材料的可加工性与45~#钢相当。
    原位TiC_p/Fe复合材料采用不同焊接工艺和焊接方法所得的焊缝组织有所
    差别,但焊缝处的组织均匀,没有裂纹等焊接缺陷产生,可焊性较好;焊缝处
    的TiC增强颗粒仍保持铸态组织中TiC增强颗粒的形态。
In-situ TiCp/Fe composites were prepared by reaction cast method with induction heating, crucible smelting and covering agent. The microstructure and phase structure of the composites were investigated by means of optional microscope, XRD and SEM. The preparation process and its parameters of composites were tested systemically. The forming mechanism of TiC particles in Fe-Ti-C melt was discussed preliminarily on the condition of optimized technology. The mechanical properties of TiCp/Fe composites with different microstructure were analyzed. The machinability and welding ability of the composites were also studied .
    The best process parameters of preparing TiCp/Fe composites were explored by means of orthogonal design test as: C was 2.8%, Si was 1.0%, Ti was 8.0% and reaction temperature was 1650 , heat preservation time was 10 minutes. The properties of the obtained composites were: HRC was 46.8, k was 14.25J cm-2. The cast microstructure was pearlite body with diffusion TiC particles distributed on it.
    According to thermodynamics and dynamics analysis, the forming-nucleus ratio of TiC was higher in the interface of carbon particles. The forming-nucleus drive power could form numerous little crystal nucleus under natural melting temperature. The formation of TiC particles in the melt could be divided into two phases which was forming-nucleus and growth. The forming mechanism of TiC was: melting Ti first surrounded C, then Ti melting in the alloy and C formed a complicated reaction mesosphere on the carbon surface. C particles decreased continually and the inborn TiC melted in the Ti liquid with the reaction. The growth process of TiC particles went with the pilling up, congregation and shape regularization of them.
    The microstructure and properties of TiCp/Fe in situ composites could be changed obviously by different heat treatments, however the shape, dimension and quantity of the TiC reinforcement couldn't be changed. Annealing could reduce hardness and raise toughness, which could be prone to mechanical machining.
    
    
    Quenching and low temperature tempering could raise intensity and hardness of materials, not reduce toughness obviously. Quenching on same temperature caused TiCp/Fe in situ composites having the best integral machine properties.
    On the condition of the test, the cutting force of TiCp/Fe composites was more
    than which of 45 steel by 60N, and the cutting temperature was higher than which of 45# steel by 90 , and the roughness of machined surface was almost as much as which of 45# steel. TiC ceramic particles enhanced the cutting force and the cutting temperature of TiCp/Fe composites, but had little effect on the roughness of machined surface. The machining quality of TiCp/Fe in situ composite was similarity to 45# steel.
    The welding line microstructure of TiCp/Fe in situ composites gained by different welding technologies and welding methods was different. However the microstructure was diffused on the welding line and there were no welding defects, the welding quality was better. The TiC reinforced particles on the welding line still kept the same shape as that of the casting microstructure.
引文
1 国家自然科学基金委员会.金属材料科学.科学出版社,1995:57~58
    2 林德春.先进复合材料在航天领域应用新进展.航天工业出版社,1994:1
    3 L.B. Zhang, J. T. Hai. Metal Matrix Composites in China. Journal of Materials Processing Technology, 1998,75(1): 1~5
    4 R.柯索斯基.金属基复合材料评述.航空材料学报,1997,17(3):2~9
    5 肯尼思·G·克雷德.金属基复合材料.国防工业出版社,1982:2
    6 吴人洁.金属基复合材料的现状与展望.金属学报,1997,33(1):78~84
    7 陈华辉,邓海金,李明等.现代复合材料.中国物资出版社,1998:74~75
    8 G.A. Chadw. Advance of Metal Matrix Composites. Cast Metals, 1991,4(3):165~167
    9 杨遇春.高新材料中异军突起的金属基复合材料.材料科学与工程,1991,9(2):7~14
    10 A. Mortensen and I. Jin. Solidification Processing of Metal Matrix Composites. International Materials Reviews, 1992,37(3): 101~128
    11 欧阳柳章,罗承萍,隋贤栋等.复合材料应用及其进展.汽车工艺与材料,2000,(2):28~31
    12 V. F. John and M. B. Charles. Metal Matrix Composites. Advanced Materials & Processes, 1998,(12):19~23
    13 I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia. Particulate Reinforced Meral Matrix Composites-a Review. Journal of Materials Science. 1991,26(12): 1137~1156
    14 李晴昊,赵长春,刘宏阳等.颗粒增强型金属基复合材料的研究进展.中国空间科学技术,1997,(5):25~32
    15 陈明安,卓利,雷秋玲等.颗粒增强金属基复合材料的快速凝固制备方法及其特点.材料导报,1998,12(1):60~63
    16 张淑英,孟繁琴,陈玉勇等.颗粒增强金属基复合材料的研究进展.材料导报,1996,(2):66~71
    17 王俊,孙宝德,周尧和等.颗粒增强金属基复合材料的发展概况.铸造技术,1998,(3):37~41
    18 赵浩峰,王玲,钱继锋.无机非金属增强铸造金属复合材料常用术语分析.铸造设备研究,2001,(4):32~33
    
    
    19 D. J. Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. International Materials Reviews, 1994,39(1): 1~23
    20 E A Feest and R M K Young. Who can Profit from the Use of Metal Matrix Composites?Metallurgia, 1996,(1): 113~117
    21 T. S. Srivasan, I. A. Ibrahim and F. A. Mohamed. Processing Techniques for Particulate-Reinforced Metal Aluminum Matrix Composites. Mater. Sci, 1991, 26(22): 5965~5978
    22 王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展.铸造技术,2001,(2):42~45
    23 乐永康,张迎元.颗粒增强铝基复合材料的研究现状.材料开发与应用,1997,12(5):33~39
    24 仝兴存,沈宁福,柳百成.快速凝固Al-3.18Ti-0.65C合金中TiC相的形成和分布特征.金属学报,1994,30(4):155~158
    25 张延杰,曾泉浦,毛小南等.颗粒增强MMCs中小粒子的强化作用.稀有金属材料与工程,1999,28(1):14~17
    26 毛小南,周廉,曾泉浦等.TiC_p颗粒增强钛基复合材料的强化机理研究.稀有金属材料与工程,2000,29(6):378~381
    27 权高峰,柴东朗,宋余九等.非连续体增强金属基复合材料的物理增强机制研究.西安交通大学学报,1994,28(2):49~54
    28 Y. Wu and E. J. Lavernia. Strengthening Behavior of Particulate Reinforced MMC's. Scripta Metallurgica et Materialia, 1992, 27(2): 173~178
    29 W. S. Miller and F. J. Humphreys. Strengthening Mechanisms in Particulate Metal Matrix Composites. Scripta Metallurgica et Materialia, 1991,25(1): 33~38
    30 惠希东,王执福,杨院生等.液态反应法制备TiCp增强铸造Fe-Cr-Ni基复合材料.金属学报,1998,34(10):1115~1120
    31 樊建中,姚忠凯,李义春等.颗粒增强铝基复合材料研究进展.材料导报,1997,11(3):48~51
    32 樊建中,桑吉梅,石力开.颗粒增强铝基复合材料的研制、应用与发展.材料导报,2001,15(10):55~57
    33 孙国雄,廖恒成,潘冶.颗粒增强金属基复合材料的制备技术和界面反应与控制.特种铸造及有色合金,1998,(4):12~17
    34 黄泽文.金属基复合材料的大规模生产和商品化发展.材料导报,1996,(增刊):18~25
    
    
    35 R. M. Aikin. The Mechanical Properties of In-Situ Composites. JOM, 1997,(1): 35~39
    36 汪涛,鲁玉祥,祝美丽等.颗粒增强金属基原位复合材料的制备技术回顾与展望.宇航材料工艺,2000,(1):12~18
    37 武高辉.中华人民共和国专利,1994:94117266.X
    38 DURA. Aluminum Alloy and Ceramic Particle Composite are Formed by Adding Particles to Melt then Shear Stirring Melt. US Patent, 1988: 4759995A
    39 赵浩峰,薛更.金属基复合材料液态成型技术的研究及发展.材料导报,1997,11(2):56~60
    40 周玉,宋桂明,王玉全.TiCp/V复合材料的断裂行为.中国有色金属学报,1999,9(增1):158~165
    41 丁占来,樊云昌,姜稚清.金属基复合材料的制作及其应用探讨.机车车辆工艺,1999,(3):12~15
    42 沃丁柱.复合材料大全.化学工业出版社,2000:261~262
    43 J. Surbrahmanyam, M. Vijayakumar. Self-propagating High Temparature Synthesis. J. Mater. Sci., 1992,27(23): 6249~6273
    44 A. W. Urquhart. Norvel Reinforced Ceramics and Metals: Review of Lanxide's Composite Technologies. Mater. Sci.Eng, 1991,(A131): 75~81
    45 方信贤,赵玉涛,孙国雄.内生TiB_2(TiAl_3)颗粒增强铝基复合材料研究进展.铸造,1999,(11):50~53
    46 吴进明,郑史烈,李志章.颗粒增强铝基原位复合材料.材料导报,1999,13(5):52~54
    47 严有为,魏伯康,林汉同等.金属基原位(In Situ)复合材料的研究现状及发展趋势(上).特种铸造及有色合金,1998,(1):47~49
    48 严学华,孙少纯,蒋宗宇.原位反应复合材料研究进展.铸造设备研究,2001,(1):27~30
    49 张国军,金宗哲,岳雪梅.材料的原位合成技术.材料导报,1997,11(1):1~4
    50 严红革,陈振华,黄培云.反应合成原位(In-Situ)复合材料制备技术进展.材料科学与工程,1997,15(1):6~9
    51 唐研辉.原位生产复合材料的特点及其进展.航空工艺技术,1998,(2):3~4
    52 严有为,魏伯康,林汉同.反应铸造工艺及原位(In Situ)颗粒增强金属基复合材料.铸造,1997,(11):55~57
    53 朱和国,吴申庆.自生铝基复合材料的制备、性能及生成机理.材料导报,
    
    1998,12(4):61~64
    54 吕维洁,张小农,张荻等.颗粒增强钛基复合材料研究进展.材料导报,1999,13(6):15~18
    55 严有为,魏伯康,林汉同等.金属基原位(In Situ)复合材料的研究现状及发展趋势(下).特种铸造及有色合金,1998,(2):48~50
    56 项品峰,刘金水,肖汉宁.铸造法制备颗粒增强铝基复合材料研究的进展.中国铸造装备与技术,1998,(2):53~55
    57 曹鹏,曲选辉.金属基复合材料的原位反应合成技术.上海有色金属,1995,16(4):235~238
    58 蔡叶,苏华钦.镁基复合材料研究的回顾与展望.特种铸造及有色合金,1996,(3):17~19
    59 李春玉,李英,刘伯操等.原位反应复合法制备金属基复合材料的进展.材料工程,1995,(11):8~10
    60 Z. A. Munir et al. Self-Propagation Exothermic Reactions: the Synthesis of High-Temperature Materials by Combustion. Mater. Sci. Rep, 1989,3(7): 277
    61 佐多延博.自蔓延合成技术SHS工艺及其在材料工程中的应用译文集.科技出版社,1993:113
    62 I. Gotman et al. Fabrication of Al Matrix In Situ Composites Via Self-propagating Synthesis. Mater. Sci. & Eng, 1994,(A187): 189~199
    63 M. Kobashi et al. Synthesis of TiB_2 Dispersed Aluminum Alloys by the Self-propagating High-temperature Reaction. Light Metals(in Jap.), 1996,(9): 444~449
    64 傅正义等.原料粒度及组成对TiB_2-Xal复合体系的SHS过程影响.复合材料学报,1994,(2):91~96
    65 Martin Marietta Corp. U S Patent, 1990: 4915908,
    66 陶春虎.TiAl及TiC/TiAl合金的XD合成研究.材料工程,1995,(12):21~23
    67 A. R. C. WESTWOOD. Materials for Advanced Studies and Devices. Metallurgical Transactions, 1988,19B(1). 155~164
    68 A. R. C. WESTWOOD. Metal Powder Report. Metallurgical Transactions, 1988,19A(3): 749~753
    69 龙春光,刘厚才,胡小平.TiC/2618复合材料熔铸工艺的研究.铸造,2001,50(3):138~140
    70 龙春光,胡小平,张厚安等.用原位反应法制备的TiC/2618复合材料的微观结构研究.功能材料,2000,31(6):669~670
    
    
    71 孙晓冬,梅炳初,袁润章等.Ti-C-Al体系热爆合成过程.金属学报,1996,32(10):1102~1106
    72 R. Mitea, W. A. Chiou and J. R. Weertman et al. Relaxation Mechanisms at the Interfaces in XD Al/TiC Metal Matrix Composites. Sctipta Metallurgica et Materialia, 1991,25(12): 2689~2694
    73 王自东,李春玉,李庆春等.中华人民共和国专利,1993:93104841.1
    74 王自东.接触反应法制造2024/TiC颗粒增强Al基复合材料的研究.哈尔滨工业大学博士论文,1992:21~63
    75 张二林,曾松岩,曾晓春等.接触反应法制备颗粒增强型金属基复合材料.材料导报,1996,(1):68~71
    76 凌兴珠.TiB_2化合物制取颗粒增强TiB_2/Al复合材料.中南工业大学学报,1997,(6):564~567
    77 M. K. Premkuar and M. G Chu. Synthesis of TiC Patriculates and Their Segregation during Solidification in In Situ Processed Al-TiC Composites. Metallurgical Transactions, 1993,24A(12): 2358~2362
    78 刘金水,肖汉宁,舒震等.原位TiC颗粒增强Al-Cu复合材料的组织及性能.中国有色金属学报,1998,8(2):259~262
    79 D. J. Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. Int. Mater. Rev, 1994,39(1): 1
    80 M. J. Koczak, M. K. Premkumar. Emerging Technology for the In-Situ Production ofMMCs. JOM, 1993,45(1): 44
    81 M. J. Koczak, K. S. Kumar. U. S. Patent, 1989:4808372
    82 S. Khatri, M. J. Koczak. Formation of TiC In-Situ Processed Composites via Solid-Gas, Solid-Liquid and Liquid-Gas Reaction in Molten Al-Ti. Mater. Sci. and Eng, 1993,(A162): 153
    83 E. Arzt, L. Schulta. New Mechanical Alloying Techniques. Calw-Hirasu(FRG), 1989,(5): 37~42
    84 L. L. Ye, Z. G. Liu et al. Thermochemistry of Combustion Reaction in Al-Ti-C System during Mechanical Alloying. J. Mater. Res, 1997,12(3): 616
    85 林涛,殷声,魏延平.原位反应在铸造法制备复合材料中的应用.材料导报,2000,14(1):30~31
    86 张守魁,王丹虹,高洪吾等.铝液与SiO_2反应原位形成Al/Al_2O_(3(p))复合材料的研究.铸造,1996,(7):4~7
    
    
    87 崔春翔,吴人洁,王浩伟.原位金属基复合材料的制备原理及工艺.材料开发与应用,1995,10(5):35~39
    88 程秀兰,潘复生.金属基复合材料的反应合成技术.材料导报,1995,(5):61~66
    89 储双杰,张国定,吴人洁.金属基复合材料的二次成型加工.轻合金加工技9术,1996,24(10):2~5
    90 李元元,张大童,张文等.金属基复合材料的切削加工性的研究进展.材料导报,1999,13(1):54~55
    91 李吴,刘宏阳,周彼德.金属基复合材料机械加工工艺的研究.航天工艺,1996,(5):53~56
    92 Koplev. The Cutting Process, Chips and Cutting Forces in Machining CFRP. Composites, 1983,14(4): 371~376
    93 胡宝刚,杨志翔,杨哲.复合材料后加工技术的研究现状及发展趋势.宇航材料工艺,2000,(5):24~27
    94 全燕鸣,周泽华.不同颗粒度SiC增强铝基复合材料的切削加工性能与适用刀具.材料科学与工程,1996,14(4):59~64
    95 袁广江,章文峰,王殿斌等.SiC颗粒增强铝基复合材料制备及机加性能研究.复合材料学报,2000,17(2):38~41
    96 于思荣,何镇明,陈凯.ZA22/Al_2O_3复合材料切削加工表面质量的研究.复合材料学报,1996,13(3):60~64
    97 N. P. Hung, F. Y. C. Boey and K. A. Khor et al. Machinability of Cast and Powder-Formed Aluminum Alloys Reinforced with SiC Particles. Journal of Materials Processing Technology, 1995,48(2): 291~297
    98 高静微.金属基复合材料连接技术的研究进展.稀有金属,1999,23(1):28~34
    99 陈茂爱,吴人洁,陆皓等.金属基复合材料的焊接性研究.材料开发与应用,1997,12(3):34~40
    100 夏德顺.铝基复合材料焊接研究述评.导弹与航天运载技术,1999,(6):38~44
    101 张胜玉.钛基复合材料的焊接.焊接技术,2000,29(5):49
    102 陈茂爱,唐逸民,陆皓等.金属基复合材料及其焊接.山东工业大学学报,1997,27(1):36~39
    103 廖恒成,张春燕,孙国雄.铝原位合成复合材料的反应模式与机理.铸造,1999,(1):43~47
    104 张作贵,刘相法,边秀房.Al-Ti-C系中TiC形成的热力学与动力学研究.金属学报,2000,36(10):1025~1029
    
    
    105 杨滨,王玉庆,张键等.铝熔体中原位反应生成TiC颗粒的机制分析.稀有金属材料与工程,1997,26(6):12~17
    106 姜文辉,C Badini.XD法合成TiC/Al复合材料的机制.复合材料学报,1998,15(1):52~55
    107 冠生中,丁雨田,许广济等.CuO/Al自生复合材料的反应动力学.金属学报,1995,31(10):465~467
    108 吕维洁,张小农,张荻等.原位合成TiC/Ti基复合材料增强体的生长机制.金属学报,1999,35(5):536~540
    109 吕维洁,张小农,张荻等.原位合成TiB/Ti基复合材料增强体的生长机制.金属学报,2000,36(1):104~108
    110 刘长松,刘永合,殷声.火焰喷涂合成TiC-Fe涂层的热力学分析.金属学报,2000,36(1):62~66
    111 邹正光,傅正义,袁润章.Ti-C-xFe体系自蔓延高温合成及机理.材料研究学报,2000,14(5):531~537
    112 李文超.冶金热力学.冶金工业出版社,1995:211
    113 吴长春.冶金热力学.机械工业出版社,1993:196
    114 金云学,张二林,曾松林等.TiCp/Ti复合材料的熔铸法制备基微观组织研究.铸造,2001,50(2):70~73
    115 A. R. Robert and X. J. Zheng. Thermodynamic Consideration of Grain Refinement of Aluminum Alloys by Titanium and Carbon. Metallurgical Transactions. 1991,22A(11): 3071~3075
    116 M. G. Chu and M. K. Premkumar. Mechanism of TiC Formation in Al/TiC In Situ Metal-Matrix Composites. Metallurgical Transactions, 1993,24A(11):2803~2805
    117 P. Wanjara, R. A. L. Drew, J. Root et al. Evidence for Stable Stoichiometric Ti_2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites. Acta Mater, 2000,48(6): 1443~1450
    118 H. T. T Sang, C. G. Chao and C.Y. Ma. In Situ Fracture Observation of a TiC/Ti MMC Produced by Combustion Synthesis. Scripta Materialia, 1996,35(8):1007~1012
    119 Y. Birol. In Situ Processing of TiCp-Al Composites by Reacting Graphite with Al-Ti Melts. Journal of Materials Science, 1999,34(10): 1653~1657
    120 P. Sahoo and M. J. Koczak. Microstructure-Property Relationships of In Situ
    
    Reacted TiC/Al-Cu Metal Matrix Composites. Materials Science and Engineering, 1991,(A131): 69~76
    121 P. Sahoo, M. J. Koczak. Analysis of In Situ Formation of Titanium Carbide in Aluminum Alloys. Materials Science and Engineering, 1991,(A144): 37~44
    122 M. K. Premkumar and M. G. Chu. Al-TiC Particulate Composite Produced by a Liquid State in Situ Process. Materials Science and Engineering, 1995,(A202): 172~178
    123 殷声.现代陶瓷及其应用.科学技术出版社,1990:7
    124 李世普.特种陶瓷工艺学.武汉工业大学出版社,1990:11
    125 E.A.鲍列索娃.钛合金金相学.国防工业出版社,1996:75
    126 刘金水,舒震,项品峰等,TiCp/ZA43复合材料的制备及其拉伸性能.中国有色金属学报,1998,8(4):585~589
    127 C. Raghunath, M. S. Bhat, P. K. Rohatgi. In Situ Technique for Synthesizing Fe-TiC Composites. Scripta Metallurgica et Materialia, 1995,32(4): 577~582
    128 B. S. Terry, O. S. Chinyamakobvu. In Situ Production of Fe-TiC Composites by Reactions in Liquid Iron Alloys. Journal of Materials Science Letters, 1991,10(4): 628~629
    129 B. S. Terry and O. S. Chinyamakobvu. Dispersion and Reaction of TiC in Liquid Iron Alloys. Materials Science and Technology, 1992,(8): 399~405
    130 T. Z. Kattamis. Solidification Processing and Tribological Behavior of Particulate TiC-Ferrous Matuix Composites. Materials Science and Engineering, 1990,(A128): 241~252
    131 Z. Liu and H. Fredriksson. On the Reaction between Fe-Ti and Fe-C Liquids. Metallurgical and Materials Transactions, 1996,27A(2): 407~414
    132 A. Chrysanthou, N. W. Davies and J. Li er al. Reaction Synthesis of Carbide-reinforced Cast Iron. Journal of Materials Science Letters, 1996,15(3): 473~474
    133 O. N. Dogan and J. A. Hawk. Abrasion Resistance of In Situ Fe-TiC Composites. Scripta Metallurgica et Materialia, 1995,33(6): 953~958
    134 A. Saidi, A. Chrysanthou, J. V. Wood. Characteristics of the Combustion Synthesis of TiC and Fe-TiC Composites. Journals of Material Science, 1994,29(21): 4993~4998
    135 惠希东,王执福,孙本茂等.颗粒TiC增强铸造Fe-Cr-Ni基复合材料的制备工艺和显微组织.铸造,1996,(11):4~7
    136 孙建荣,孙扬善,闵学刚.TiCp/3Cr13复合材料显微组织及耐磨性的研究.
    
    铸造,2001,50(1):25~28
    137 闵学刚,孙扬善,高峻德等.原位合成TiCp颗粒增强铸铁材料的研究.铸造,2001,50(3):149~151
    138 樊泉,孙扬善,孙建荣.TiCp/1Cr18Ni9复合材料显微组织和力学性能的研究.铸造,2001,50(7):388~391
    139 孙建荣,孙扬善,李龙.TiCp/3Cr13复合材料的显微组织和力学性能研究.铸造,2000,49(7):392~395
    140 邹正光,傅正义,袁润章,TiC/Fe体系自蔓延高温合成过程中金属相Fe的作用.材料科学与工程,1998,16(3):46~48
    141 邹正光,傅正义,袁润章.自蔓延高温合成TiC复合添加剂增强铁基粉末冶金材料.中国有色金属学报,2001,11(3):408~411
    142 邹正光,傅正义,袁润章.Ti-C-Fe体系自蔓延高温合成的反应动力学过程和结构形成过程.复合材料学报,1999,16(3):78~81
    143 王一三,张欣苑,李凤春等.反应铸造生成Fe-TiC梯度表面复合材料的研究.热加工工艺,1999,(4):13~15
    144 邹正光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fe复合材料的研究.硅酸盐学报,2001,29(3):199~203
    145 王一三,张欣苑,李凤春等.液相合成VC颗粒增强钢基表面复合材料研究.机械工程材料,1999,23(4):35~37
    146 林文松,李元元.颗粒强化钢铁基复合材料的研究现状与展望.粉末冶金工业,2001,11(5):25~29
    147 范群成,方学华,柴惠芬.45(Ti+C)+55Fe(wt-%)的自蔓延燃烧反应过程.金属学报,1994,30(11):513~517
    148 鲍崇高,王恩泽,高义民等.颗粒体积分数对Al_2O_3/钢基复合材料高温抗磨性的影响.复合材料学报,2001,18(2):61~64
    149 王恩泽,徐学武,邢建东.颗粒增强钢基铸造复合材料研究.材料科学与工程,1996,14(4):27~30
    150 许大庆,罗吉荣,黄乃瑜.铁基颗粒复合材料的组织与抗冲蚀性能.特种铸造及有色合金,1998,(6):8~10
    151 梁作俭,邢建东,鲍崇高等.碳化钨/铁基铸造复合材料的抗冲蚀磨损性能.铸造,2000,49(5):265~267
    152 张静,潘复生,陈万志.铁基复合材料的现状和发展.材料导报,1995,(1):67~71
    153 E.Pagounis and V. K. Lindroos. Processing and Properties of Padiculate
    
    Reinforced Steel Matrix Composites. Materials Science and Engineering, 1998(A246): 221~234
    154 刘兆晶,左锋,章德铭等.坩埚炉衬材料对TiCp/Fe复合材料组织及性能的影响.哈尔滨理工大学学报,2001,6(6):45~48
    155 刘兆晶,章德铭,左锋等.熔体覆盖剂对原位TiCp/Fe复合材料组织和性能的影响.哈尔滨理工大学学报,2002,7(2):83~86
    156 刘献礼.聚晶立方氮化硼刀具及其应用.黑龙江科技出版社,1999:3~89
    157 梁义田,刘真,袁森.合金元素在铸铁中的应用.西安交通大学出版社,1992:85
    158 北京大学数学力学系概率统计组.正交设计法.石油化学工业出版社,1976:94
    159 A. M. Kanury. A Kinetic Model for Metal+Nonmetal Reactions. Metallurgical Transactions, 1992,23A(20):2349~2356
    160 Y. C. Guo and C. Z. Wang. Interaction Coefficients in Fe-C-Ti-i (i=Si, Cr, Al, Ni) Systems. Metallurgical Transactions, 1990,21B(3): 543~547
    161 D. G. Mcartney. On the Diffusion of Carbon in Titanium Carbide. Int Mater Rev, 1989,34(5):247~251
    162 肖纪美.合金能量学.上海科学技术出版社,1985:44
    163 潘金生,田民波.材料科学基础.清华大学出版社,2000:89
    164 R. W. K. Honeycombe. Steels Microstructure and Properies. Edward Arnold Ltd, 1981: 7
    165 雷廷权,傅家骐.金属热处理工艺方法500种.机械工业出版社,1998:32~37
    166 樊东黎.热处理技术数据手册.机械工业出版社,2000:23~36
    167 徐祖耀.相变原理.科学出版社,2000:74
    168 章德铭,李凤珍,刘兆晶等.原位TiCp/Fe复合材料的制备工艺优化.哈尔滨理工大学学报,2002,7(4):22~26
    169 高静微,屈树岭.金属基复合材料(MMCs)的应用现状与市场前景.稀有金属,1997,21(4):277~282
    170 郑远谋,黄荣光,陈世红.爆炸焊接和金属基复合材料.复合材料学报,1999,(1):72~75
    171 张庆茂,何金江,刘文金等.激光熔覆(Zr+WC)/FeCSiBRE合金的组织和性能.焊接学报,2002,23(4):12~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700