用户名: 密码: 验证码:
常用化学杀虫剂和抗生素对苏云金杆菌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微生物农药中,苏云金杆菌(Bacillus thuringiensis简称Bt)因其杀虫活性高、杀虫谱较广、易于大规模生产、对人畜安全、无环境污染等特点,已被广泛应用于防治农、林和环卫害虫,并取得了显著的经济效益、社会效益和生态效益,在微生物防治害虫的实践中占有极其重要的地位。本论文以微生物学和分析化学相结合为出发点,在微生物学的基础上,辅以化学知识,着眼于苏云金杆菌杀虫剂在实际应用和制剂保存中存在的问题,重点研究了化学杀虫剂与苏云金杆菌制剂混配和抗生素类作为防腐剂时,二者对苏云金杆菌杀虫剂主要杀虫活性成分伴胞晶体蛋白及芽孢的影响。
     研究明确了4类(菊酯类、有机磷类、氨基甲酸酯类和杀螨类)9种常用化学杀虫剂与苏云金杆菌制剂混用时对苏云金杆菌芽孢及主要活性成分伴胞晶体蛋白的作用和影响。十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析表明,经菊酯类和有机磷类杀虫剂处理的伴胞晶体蛋白带中,均有一浓度可使伴胞晶体蛋白带颜色加深;经80%敌敌畏500倍稀释液处理的伴胞晶体的两条主要蛋白带较未处理对照相应色带明显变浅,说明该杀虫剂对伴胞晶体蛋白有明显影响。该杀虫剂导致伴胞晶体蛋白带变浅的可能原因:①敌敌畏有效成分分子结构中的P=O键具有一定的氧化作用;②80%敌敌畏制剂中的某种助剂对伴胞晶体蛋白有降解作用。上述两种原因均有可能导致电泳蛋白带变浅。经20%灭多威、20%三氯杀螨醇和10%哒螨酮处理的伴胞晶体蛋白电泳带未发生明显变化。生物测定结果表明,80%敌敌畏与Bt制剂混配一定时间后在某种程度上将造成Bt杀虫毒力的降低,而其余8种杀虫剂与Bt制剂混配后的一定时间内均有不同程度的增效作用。常规使用浓度下,25%敌杀死、48%乐斯本、20%三氯杀螨醇和10%哒螨酮
    
     l-l。I 文 摘 要
    乳油可与苏云余杆菌制剂配制成混剂;4.SO/O高效氯氟菊酯乳汕、Z.5%功大乳汕。
    20%灭多威和 40%辛硫磷。IJ与书、云朵杆菌制剂现混现用;80%敌地畏不’1’I’与苏云
    朵杆菌制剂混用。
     针对苏云朵朴自悬浮剂剂型。卜存在f叫Z柏山高化及费力一门a两人问题,州大队
    确了]4种常用医用抗生素作为防购利对苏云今杆菌制剂芽地价发的抑制作用和
    对伴胞晶体的影响。结果在;刃,红有素、欢酸环丙沙星对*H菌株芽他。的发有较
    强的抑制作用,在 0.5 u g/ml低剂量下]-I在一个月内抑制芽地的Iw发;氧氟沙星
    和麦迪霉素抑制作用稍差,在 5 u g叩l白剂量下抑制作用15ti 日问延长而减宕,96h
    后基本丧失抑制作用。其它几种抗生素对苏云金杆菌芽他萌发的抑制终浓度均在
    30vg/ml以上;试验研究了对芽泡萌发抑制作用较强的麦迪霉素、红霉素。氧氟
    沙星和盐酸环丙沙星对CH菌株伴胞晶体的作用,SDS-PAGE检测结果表明,试
    验浓度下,这4种抗生素对Cll菌株伴胞晶体无损伤作用。其中氧氟沙星45℃条
    件下放置4d,发酵液毒力保持率为96二%。在苏云朵杆菌悬浮剂中加入适当的抗
    生素作为防腐剂,既可防止其二次发酵,抑制某些杂菌的生长,又对苏云来杆菌
    悬浮剂中的主要杀虫话性成分伴胞晶体蛋白无损伤作用,从而可维持。悬浮别的稳
    定性,延长保存期。
As one of important branch of micro-pesticide. Bacillus thuringiensis (Bt) are widely used in controlling pests on agriculture , forest , sanitation and so on. And notable effects in economic society and zoology were obtained. In micro-controlling, B1 has showed its unsubstitute state. On the basis of microbiology, the research work is on the problems about conservation and. application of preparation of Bt. The effects of chemistry pesticides when blended with Bt and antibiotics as antisepsis on spore and parasporal crystal of Bt were studied.
    The effects of 9 kinds of 4 species (pyrethroid compounds, organic phosporus compounds, carbamate compounds and killing-mite compounds) of chemical pesticides on spore and parasporal crystal of CH strain of Bacillus thuringiensis were studied when the two kind of pesticides were blended to control pests. The results of the present study showed that these chemical insecticides had different effects on Bt spore and insecticidal crystal protein (ICP). The analysis of SDS-PAGE showed that pyrethroid compounds and organic phosporus compounds could do good to ICP of Bt. Dichlorvos was very harmful to parasporal crystals. The reason of the latter may be: (1)the P=O configuration of the efficient content of dichlorvos may oxygenize ICP so that the activity of ICP was destroyed: (2)some reducing agent in the dichlorvos preparation would do great harm to ICP. Methomyl, dicofol and pyridaben hadn't obvious effects on ICP. Among the nine insecticides studied, deltamethrin. chlorpyrifos. dicofol and pyridaben had no harm
    ful effects and they may be mixed with Bt as composite preparation; Beta-cypermethrin. cyhalothrin. methomyl and phoxim may be temporarily mixed with Bt for use. Dichlorvos can't be mixed with Bt as composite preparation or temporarily mixed with Bt for use.
    On the contagion of preparation and the decrease of toxin in Suspension Concentrate (SC), fourteen kinds of medical antibiotics were studied about their effects on prohibiting the revegetation of spores and parasporal crystals as antisepsis. The
    
    
    results showed that these antibiotics had different effects on Bt spore and ICP. The optimal antibiotics for controlling spore revegetation were ncrythromycin and ciprofloxacin hydrochloride, both at 0.5 u g/ml. Oflixacin and ofloxacin needed higher doses, at 5 u g/ml in liquid which could control spores growth for 96h. The others were above 30 u g/ml to take effect. The spores treated with these antibiotics could bourgeon when the antibiotic was diluted or eliminated. SDS-PAGE and bioassay showed that Oflixacin , erythromycin , ofloxacin and ciprofloxacin hydrochloride did not destroyed parasporal crystal. Ofloxacin had better preservation among the four antibiotics. After the fermented liquid added with ofloxacin was stored at 45℃ for four days, the percent of the original activity remained was 96.2%. According to the laboratory research, the author thought that some kinds of antibiotics could prohibit the growth of spore and some other saprophyte when antibiotic was used as antisepsis in SC. Thus, some an
    tibiotics can replace chemical-synthesizing antisepsis which may contaminate air, water in great extent. Meanwhile. these antibiotics can also retain the stabilization of SC better.
引文
[1] 喻子牛.微生物农药及其产业化.北京:科学出版社,2000,第一版,10~31。
    [2] Runjie Zhang, Dexiang Gu, Wenqing Zhang, etal.Integratde Pest Management in Rice-based Ecosystem, Editorial Department of Zhongshan University,1997.
    [3] 喻子牛.苏云余杆菌制剂的生产和应用.北京:中国农业出版社,1993,第一版.
    [4] 喻子牛.苏云金杆菌.科学出版社,第一版,1990。
    [5] Berliner E. uber die schlaffsucht der mehhnottenraupe.Zeitschrift fur das gesamte Getreidewesen. 1911.3:63-70.
    [6] Berliner E ber die schlaffsucht der mehlmottenraupe .(Ephestia kuniella zell,) und ihren Erreger Bacillus thuringiensis n.sp. Zeitschrift fur Angewandte Entomologie. 1915,2:29-56.
    [7] Faust R M. Nature of pathogenicprocess of Bacillus thuringiensis. Comparaive Pathobiology. 1984,7:91-141.
    [8] Steinhause E A. Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpollar. Hilgardia. 1951, 20:359-381.
    [9] Burges H D Stability of Bacillus thuringiensis in bees wwx and bee comb. Proc. 4th int.Collouium Insect Pathol. College Park. 1971. 214-218.
    [10] Jocobs S E . bacteriological control of the flour moth(Ephestia kuhniella). Proc. Appl. Bacteriol. 1950,13:83-91.
    [11] Hannay C L. Crystalline inclusion in aerabic spoeforming bacteria.Nature.1953, 172: 1004.
    
    
    [12] Hannay C L, Fitz-James P C. The protein crystal of Bacillus thuringiensis Berliner. Can .J. Microbiol. 1955, 1:694-710.
    [13] Dulmage H T. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Invertebr.Pathol. 1970,15:232-239.
    [14] Zakharyan R A, Agabalyan A S,Chili-Akopya L A et al. Possible role of extrachromosomal DNA in the formation of the entomocidal endotoxin of Bacillus thuringiensis. Doklady Akademii Nauk Armenian USSR. 1976.63:42-47.
    [15] Debabov VG, Azizbekyrcen RR. Klbalina VV et al. Isolation and preliminary characterization of extra chromosomal elements of Bacillus thuringiensis DNA. Genetika. 1977.13:496~501
    [16] Galushka F P,Azizbekyan RR. Investigation of plasmids of different variants of Bacillus thuringiensis .Dokl. Akad. Nauk(USSR). 1977,236:1233-1235.
    [17] 陈涛.有害生物的微生物防治原理和技术.湖北科学技术出版社,1995,第一版, 41-50。
    [18] Yu ziniu,sun ming ,liu ziduo. Biotechnology of bacillus thuringiensis.vol.3,science press ,Beijing ,new york。
    [19] Leo Kim(Ed.).Advanced Engineered Pesticides .Marcel Dekker, Inc.New York,Basel, Hong Kong.1993。
    [20] 蒲蜇龙,昆虫病理学,广州:广东科技出版社,1992,第一版,238。
    [21] 黄大昉,农业微生物基因工程,科学出版社,2001,第一版, 193。
    [22] 喻子牛,孙明,刘子铎等.苏云金杆菌的分类及生物活性蛋白基因.中国生物防治,1996,12(2):85~89。
    
    
    [23] 喻子牛,微生物农药及其产业化,科学出版社,2000,第一版,35-40。
    [24] 薄蜇龙,昆虫病理学,广州:广东科技出版社,1992,第一版,217~338。
    [25] Tabashnik. Evolution of resistance to Bacillus thuringiensis Annu.Rev.entomol., 1994,39:47-79。
    [26] Shelton AN.Roush RT, Tang Jd et al. Presented at the ⅩⅩⅧth Annual meeting of the society for Invertebrate Pathology Cornell University ,Ithaca, N. Y 1995。
    [27] 鲁小知,洪华珠.昆虫对苏云金杆菌制剂的抗性及其对策.生物防治通报,1993,(1):36-39。
    [28] 戴承镛,殷向东,徐熙.小菜蛾对苏云会杆菌制剂的抗性及对策.生物防治通报.1994,10(2):62-66。
    [29] 李建红,伍建宏,喻子牛等.小菜蛾对苏云金杆菌的抗药性研究.华中农业大学学报,1997,17(3):214-217。
    [30] 王维专,陈伟平,卢叔勒等.广东、深圳地区小菜蛾对定虫隆、Bt的抗性监测.植物保护学报,1993,20(3):273-276。
    [31] 冯夏,陈焕瑜,帅应恒等.广东小菜蛾对苏云金杆菌的抗性研究.昆虫学报,1996,39(3):238-245。
    [32] 黄大昉.农业微生物基因工程,科学出版社,2001,第一版,219—221。
    [33] 黄大昉.农业微生物基因工程,科学出版社,2001,第一版,221-224。
    [34] 喻子牛,戴大生,张用稳.苏云金杆菌可湿性粉剂中农乳100号加入量的试验研究.武汉化工,1980(2):8-10。
    [35] 彭中允,吕淑珉,徐迎春等.苏云金杆菌的工业生产和应用.中国生物防治的进展,农业出版社,1984,第一版,341-358。
    
    
    [36] 吴泽宜.农药词汇.北京:科学出版社,1981,第一版。
    [37] 和有杰.农药复配与新剂型.北京:科技文献出版社,1994,第一版,38-41。
    [38] 陈少莲.杀虫微生物第四卷,武汉:武汉大学出版社,1994:72-74。
    [39] 徐加生.杀虫微生物第四卷.武汉:武汉大学出版社,1994:118-121。
    [40] Sminoff W A, Vaero J R. J Invertebr Pathol. 1983, 42; 415~417。
    [41] 喻子牛.苏云金杆菌.北京:科学出版社,1990.第一版.293。
    [42] 马立安.防腐剂对苏云金杆菌制剂活力及毒力测定的影响.微生物学杂志,2000,20(3):37~39。
    [43] 张俊亭,李治祥,张克强等.苏云金杆菌液体剂型的研制.农业环境保护,1998,17(4):158~161。
    [44] Heimpel A M. A Critical Review of Bacillus thuringiensis Var.thuringiensis Berliner and other Crstalliferous Bacteria (Biological Control of Insecs).Ann.Rev.Ent.,1967,12:287-322.
    [45] 缪文超,李亚波,刘红等.苏云金杆菌HD-1与化学农药对蔬菜叶面害虫主要天敌的影响.环境科学,1985,(5):17-20。
    [46] 彭步宜,傅舒望,陈南武等.苏云金杆菌防治稻纵卷叶螟效果的研究.植物保护学报,1984(11):9-16。
    [47] Koziel M G,Carozzi N B,Currier T C et al. the insecticidal crystal proteins of Bacillus thuringiensis: past,present and future uses. Biotechnol .Gen.Engi.Rev.,1993,1 :171~228。
    [48] Entwistle P E,Cory J S, Bailey M et al. Bacillus thuringiensis, an environmental biopesticide: theory and practice.Chichester:John Wiley& Sons Ltd.
    
    
    [49] Schnepf E,Crickmore N,Van Rie J et al. Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol,Mol.Biol.Rev., 1998,62:775-806.
    [50] 喻子牛.微生物农药及其产业化.科学出版社,2000,第一版,35-44。
    [51] 殷向东.生物源杀虫剂研究应用进展及其在我国的发展思路.农药.1999,38(11):45-46。
    [52] 董惠芳,牛离平.复方苏云金杆菌商品制剂对捕食螨的影响.生物防治通报,1991,7(1):10-12。
    [53] 庄占兴,慕立义,洪淑梅.苏云金杆菌防治抗药性棉铃虫应用技术研究.农药.1993,32(6):6-10。
    [54] 冯书亮,王容燕,付韵琴等.产维生素B2的苏云金杆菌CH菌株的生物学特性.华北农学报.1997.12(增刊):1-7。
    [55] 王文军,钱传范,申继忠等.活性氧对苏云金杆菌伴胞晶体的损伤作用.微生物学报,1999,39(5):469-474。
    [56] 刘丰茂,钱传范,江树人.苏云全杆菌制剂蛋白的SDS-PAG-TLC定量分析.植物保护学报,1998,25(4):359-363。
    [57] Yousten A A, Rogoff M H. J Bacteriol. 1969, 100:1229~1236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700