用户名: 密码: 验证码:
水分—氮素—光照对玉米生长的互作效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分、氮素、光照与植物生长关系非常密切,研究水分、氮素、光照在植物生长过程中的互作效应机理,为生产上合理的水肥运筹提供理论依据和指导。本文以玉米为研究对象,采用室内试验与室外试验、盆栽试验与大田试验相结合的研究方法,主要研究不同光照、施氮、灌水水平及不同形态氮素等因素对玉米体内氮素代谢及生物产量的影响,揭示了水分、氮素、光照对玉米叶片及根系硝酸还原酶活性、叶片硝态氮含量、植株全氮含量,光合作用以及根系和地上部生物产量等的互作效应。主要研究结果为:
     (1)供施铵态氮肥的玉米叶片硝酸还原酶活性在低光低氮时最高,而供施其它三种氮肥的叶片硝酸还原酶在高光高氮下活性最大,而四种氮肥处理的玉米根系硝酸还原酶在高光低氮下活性最大。适当增加硝态氮施用量可提高玉米叶片和根系硝酸还原酶活性,而在低光强下,增施其它形态的氮肥,尤其是铵态氮肥,反而会在一定程度上抑制玉米叶片和根系硝酸还原酶的活性。
     (2)增施铵态氮肥能促进玉米幼苗对氮素的吸收和同化,而且玉米植株全氮含量和叶片硝态氮含量较低,植株总吸氮量较高,玉米地上部生物产量最高。而以硝态氮肥为氮源时,玉米叶片硝态氮含量和全氮含量最高。
     (3)低光强下,灌水和施氮对玉米叶片硝酸还原酶活性的作用有限,而对玉米根系硝酸还原酶活性的影响显著,适当水分亏缺或增施氮肥均可显著地增加根系硝酸还原酶活性;高光强下,增加灌水对玉米叶片硝酸还原酶活性的促进作用大于根系,而增施氮肥对玉米叶片和根系硝酸还原酶活性的影响一致,但高氮和过量灌水会降低玉米叶片硝酸还原酶活性,严重抑制根系硝酸还原酶活性。
     (4)光照有利于增加玉米叶片硝态氮的含量。适量施氮和灌水可降低玉米叶片硝态氮的含量;干旱或过量灌水均会增加玉米叶片硝态氮含量。
     (5)高光强条件下,玉米根系和地上部生物产量明显高于低光强,而且根/冠比也较大。低光强下适当增加硝态氮肥施用量可提高玉米根系和地上部生物产量,对根/冠比影响较小,而增加铵态氮肥则明显降低了玉米根/冠比。
     (6)适当减少灌水,可提高玉米的根/冠比;在高光照下,适当的水分亏缺能促进玉米根系的生长。
     (7)提高光照强度可明显地提高玉米总吸氮量;在一定范围内增加灌水可增加玉米籽粒的总吸氮量,降低玉米茎叶的总吸氮量,提高玉米植株的总吸氮量;在一定施氮量范围内,干旱和过量灌水皆能降低玉米植株的总吸氮量;适量的增加氮肥施用量可提高玉米植株总吸氮量,而在土壤干旱的条件下,施氮量不宜过高。
     (8)增施氮肥、增加灌水均能提高玉米生物产量,其增产效果主要受光照控制。而过量灌水和施肥,反而会降低玉米生物产量。
Interaction of the plant growth with the factors of water, nitrogen and light is very closely. In order to provide theory basis and guidance for the agriculture production reasonably, the mechanism for the functions of water, nitrogen and light in the growth of plant need to be studied. In this thesis, effect of water, nitrogen and light on nitrate reductase activity, nitrite nitrogen, nitrogen content and biomass production in maize planted in pot and field experiments are discussed. The main results obtained in this study are as follows:
    (1) Nitrate reductase activity of maize grown in four different N-fertilizer sources was highest in leavers under high light and high fertilizer treatments, but it was lowest in roots under high light and low fertilizer treatments. The nitrate reductase activity of maize leaves and roots was higher with appropriate nitrate applications, but lower under low light
    treatments in other forms N-fertilizer sources especially ammonium fertilizer source.
    (2) Increasing the amount of ammonium fertilizer might enhance nitrogen uptake and assimilation in maize seedlings. Under the same conditions, the contents of nitrogen and nitrate of leaves in maize were lower, the amount nitrogen in maize was higher and the shoot biomass production was highest. In nitrate fertilizer sources, the contents of nitrogen and nitrate in maize were highest.
    (3) Under low light treatments, the nitrate reductase activity of maize leaves was only slightly affected, root nitrate reductase activity of maize was notably affected by the amount of water and nitrogen in soil. Under drought conditions and with a great of ammonium fertilizer application, the root nitrate reductase activity of maize was high. Under high light treatments, the nitrate reductase activity of maize leaves and roots were increased with the increase of the amount of irrigation water, but it reduced by axcessive irrigation water under the higher N-fertilizer treatments.
    (4) High light is useful to increase the leaves nitrate content in maize. The leaves nitrate content in maize was reduced under the appropriate amount of irrigation water and application of N-fertilizer, but it increased under the drought condition or axcessive irrigation water.
    
    
    (5) Under high light treatments, the shoot and root biomass production in maize were higher, and the root/shoot ratio was higher. Under lower light treatments, with the appropriate increase of the amount of application of nitrate fertilizer, the shoot and root biomass production in maize were increased and the root/shoot ratio was slightly affected.
    (6) The root/shoot ratio in maize was increased with the appropriate increase of the amount of irrigation water. Under high light treatments, the appropriate water efficiency made root grow well in maize.
    (7) The amount nitrogen in maize was increased with the increase of light. The amount nitrogen of seed in maize was increased and the amount nitrogen of stems and leaves in maize were reduced with the appropriate increase of the amount of irrigation water. The amount nitrogen in maize was reduced under the drought conditions or by axcessive irrigation water. The amount nitrogen in maize were increased with the appropriate increase of the amount of application of N-fertilizer, but under the drought conditions, were reduced by the great amount of application of N-fertilizer.
    (8) The biomass production in maize was increased with appropriate increase of the amount of irrigation water or application of N-fertilizer, affected notably by light, but reduced by axcessive irrigation water or application of N-fertilizer.
引文
1.张福锁,环境胁迫与植物营养,北京农业大学出版社,1993.1
    2.荆家海,植物生理学,陕西农业科学技术出版社,1994.1
    3.康绍忠,蔡焕杰,梁银丽,张富仓,刘晓明,节水农业中作物水分管理基本理论问题的探讨,水利学报,1996,(5):9-17
    4.李德全,张以勤,邹琦,程炳蒿,土壤水分胁迫对抗旱性小麦水分状况、光合及产量的影响,山东农业大学报,1992,23(2):125-130
    5.汤章城,植物对水分胁迫的反应和适应性Ⅱ植物对干旱的反应和适应性,植物生理学通讯,1993,(4):1-7
    6.高俊凤,植物生理学试验技术,世界图书出版社,2000.1
    7.朱根海,张荣铣,叶片含氮量与光合作用,植物生理学通讯,1985,(2):9-12
    8.山仑,徐萌,节水农业及其生理生态基础,应用生态学报,1991,2(1):70-76
    9.王喜庆,李生秀,高亚军,土壤水分在提高氮肥肥效中作用机制,西北农业大学学报,1997,25(1):16-19
    10.张爱良,黄桂英,苗果园,周乃健,冯文新,不同土壤水分对冬小麦旗叶生理特性的影响,山西农业大学学报,1998,18(3):200-202
    11.梁万福,幸亨泰,土壤氮素对小麦生育期硝酸还原酶活性的影响,西北师范大学学报(自然科学版),1996,32(1):52-56
    12.葸玉琴,张金文,牛俊义,硫、6-BA、水分和温度对春小麦硝酸还原酶活性的影响,甘肃农业大学学报,1996,31(3):268-272
    13.薛青武,陈培元,土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响,植物生理学报,1990,16(1):49-56
    14.吕殿青,杨进荣,马林英,灌溉对土壤硝态氮淋吸效应影响的研究,植物营养与肥料学报,1999,5(4):307-315
    15.冯广龙,罗元培,杨培岭,节水灌溉对小麦干物质分配、灌浆及水分利用效率的影响,华北农学报,1998,13(2):11-17
    16.关义新,林葆,凌碧莹,光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响,作物学报,2000,26(6):806-812
    17.李世清,田霄鸿,李生秀,养分对旱地小麦水分胁迫的生理补偿效应,西北植物学报,2000,20(1):22-28
    18.张殿忠,王沛洪,水分胁迫与植物氮代谢的关系Ⅰ水分胁迫对小麦叶片氮代谢的影响,西北农业大学学报,1988,16(3):9-15
    19.张殿忠,王沛洪,水分胁迫与植物氮代谢的关系Ⅱ水分胁迫时氮素对小麦叶片氮代谢的影响,西北农业大学学报,1988,16(4):15-21
    
    
    20.王百群,张卫,余存祖,用(15)~N示宗法研究不同土壤水分条件下小麦对氮的吸收利用,核农学报,1999,13(6):362-367
    21.赵炳梓,许富安,水肥条件对小麦、玉米N、P、K吸收的影响,植物营养与肥料学报,2000,6(3):260-266
    22.关义新,林葆,凌碧莹,光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响,植物营养与肥料学报,2000,6(2):152-158
    23.曾希柏,谢德体,青长乐,侯光炯,氮肥施用量对莴笋光合特性影响的研究,植物营养与肥料学报,1997,3(4):323-327
    24.陈锦强,李明启,不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系,植物生理学报,1983,9(3):251-259
    25.上官周平,氮素营养对旱作小麦光合特性的调控,植物营养与肥料学报,1997,3(2),105-109
    26.张岁岐,山仑,薛青武,氮磷营养对小麦水分关系的影响,植物营养与肥料学报,2000,6(2):147-151
    27.石岩,于振文,土壤水分胁迫对冬小麦光合及产量的影响,华北农学报,1996,11(4):
    28.L.比弗斯,植物的氮代谢,北京:科学出版社,1981
    29.李豪喆,廉贞德,路桂英,李明熙,朴顺姬,硝酸还原酶活力与作物耐肥性的研究Ⅶ水稻叶片硝酸还原酶活力与施氮量的关系,植物生理学通讯,1985,(5):14-16
    30.李有才,林振武,汤玉玮,硝酸还原酶的研究Ⅶ棉花不同品种的硝酸还原酶活力,作物学报,1986,12(2):95-99
    31.冯福生,陈文龙,李洁,王玉崑,王秋分,不同供氮水平下冬小麦叶片中RuBP羧化酶和硝酸还原酶的活性变化,植物生理学通讯,1986(6):20-22
    32.曹翠玲,李生秀,苗芳,氮素对植物某些生理生化过程影响的研究进展,西北农业大学学报,1999,27(4):96-101
    33.李春喜,张根发,石惠恩,石有民,氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响,西北植物学报,1995,15(4):276-281
    34.胡定金,Vlassak K,不同光强下硝酸根离子停供对菠菜硝酸盐含量的影响,土壤肥料,1993,(4):27-30
    35.张岁岐,根冠关系对作物水分利用的调控,西北农林科技大学2001届攻读博士学位研究生毕业论文
    36.陈锦强,李明启,高等植物绿叶中的氮代谢与光合作用的关系,植物生理学通讯,1984,(1):1-8
    37.曾希柏,侯光炯,青长乐,谢德体,土壤-植物系统中光照与氮素的相互关系研究,
    
    2000,20(1):103-108
    38.曾希柏,青长乐,谢德体,侯光炯,作物生长中光照和氮肥施用量的相互关系研究,土壤学报,2000,37(3):380-386
    39.曾希柏,青长乐,谢德体,侯光炯,光照条件对土壤-植物系统氮素状况影响的研究,应用生态学报,1998,9(2):139-144
    40.赵平,孙谷畴,彭少麟,植物氮素营养的生理生态学研究,生态科学,1998,17(2):37-42
    41.石岩,于振文,位东斌,余松烈,土壤水分胁迫对冬小麦氮素分配利用及产量的影响,核农学报,1999,13(1):27-33
    42.肖凯,张荣铣,钱维朴,氮素营养对小麦群体光合碳同化作用的影响及其调控机制,植物营养与肥料学报,1999,5(3):235-243
    43.王朝辉,李生秀,不同生育期缺水和补充水对冬小麦氮磷钾吸收及分配影响,植物营养与肥料学报,2002,8(3):265-270
    44.李絮花,杨守祥,玉米苗期肥水耦合效应研究,山东农业大学学报(自然科学版),2002,33(3):273-280
    45.邵明安,农田生态系统中物质迁移过程研究,西安:陕西人民出版社,2001.1
    46.宋凤斌,许世昌,戴俊英,水分胁迫对玉米光合作用的影响,玉米科学,1994,2(3):66-70
    47.武玉叶,李德全,赵世杰,邹琦,土壤水分胁迫下小麦叶片渗透调节与光合作用,作物学报,1999,25(6):752-758
    48.同延安,土壤—植物—大气连续体系中水分运移理论与方法,西安:陕西科学技术出版社,1998.6
    49.张岁岐,山仑,氮素营养对春小麦抗旱适应性及水分利用的影响,水土保持研究,1995,2(1):31-35
    50.介晓磊,韩燕来,谭金芳,彭华,高文红,张化平,王立河,王喜枝,不同肥力麦田水氮交互效应与耦合模式研究,作物学报,1998,24(6):963-970
    51.史吉平,董永华,水分胁迫对小麦光合作用的影响,国外农学:麦类作物,1995,(5):49-55
    52.梁银丽,康绍忠,节水灌溉对冬小麦光合速率和产量的影响,西北农业大学学报,1998,26(4):16-19
    53.上官周平,水分胁迫对玉米光合作用的影响,中国科学院西北水土保持研究所文集,1988,(8):72-76
    54.张维强,沈秀瑛,水分胁迫和复水对玉米光合速率的影响,华北农学报,1994,9(3):44-47
    55.陆景陵,植物营养学(上册),北京农业大学出版社,1994.9
    
    
    56.朱兆良,文启孝,中国土壤氮素,南京:江苏科学技术出版社,1990
    57.徐明岗、姚其华,吕家珑,土壤养分运移,北京:中国农业科技出版社,2000.11
    58.张福锁,樊小林,李晓林,土壤与植物营养研究新动态(第二卷),北京:中国农业出版社,1995:42-75
    59.汪德水,旱地农田肥水协同效应与耦合模式,北京:气象出版社,1999.2
    60.陈新平,李晓林,陈红,土壤水分状况对磷钾养分、移动性的影响,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    61.李生秀,肖俊峰,程素云,论我国旱地土壤的水分管理,干旱地区农业研究,1989,(1):1-10
    62.冷石林,韩仕峰,王立祥,中国北方旱地作物节水增产理论与技术,北京:中国农业科技出版社,1996
    63.李生秀,巨孝堂,王喜庆,水分对土壤养分矿化的影响,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    64.邹邦基,李书鼎,朱玺,褐土中肥料锌((65)~Zn)的扩散迁移与水分状况的关系,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    65.李生秀,高亚军,王喜庆,李世清,杜建军,水分对土壤养分迁移的影响,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    66.许玉彬,作物水分利用效率研究进展,陕西农业科学,1998,(4):13-18
    67.郭庆荣,张秉刚,钟继洪,植物根系吸收土壤水分的研究综述,热带亚热带土壤学,1996,5(3):173-179
    68.张爱良,苗果园,王建平,作物根系与水分的关系,作物研究,1997,(2):4-6
    69.康绍忠,张建华,梁宗锁,胡笑涛,蔡焕杰,控制性交替灌溉——一种新的农田节水调控思路,干旱地区农业研究,1997,15(1):1-5
    70.杜建军,李生秀,李世清,不同肥水条件对旱地土壤供氮能力的影响,西北农业大学学报,1998,26(6):1-5
    71.李生秀、李世清、高亚军,王喜庆,杜建军,水分对作物吸收养分的影响,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    72.程宪国,汪德水,张美荣,周涌,金柯,郭世昌,王自力,王书子,不同土壤水分条件对冬小麦生长和养分吸收的影响,见《旱地农田肥水关系原理与调控技术》(汪德水主编),北京:中国农业科技出版社,1995.10
    73.冯广龙,刘昌明,土壤水分对作物根系生长及其调控作用,生态农业研究,1996,
    
    (3):5-9
    74.李伏生,康绍忠,CO_2浓度升高、氮和水分对春小麦养分吸收和土壤养分的效应,植物营养与肥料学报,2002,8(3):303-309
    75.胡明芳,田长彦,马英杰,不同水肥条件下棉花苗期的生长、养分吸收与水分利用状况,干旱地区农业研究,2002,20(3):35-37
    76.张岁岐,山仑,邓西平,小麦进化中水分利用效率的变化及其与根系生长的关系,科学通报,2002,47(17):1327-1331
    77.张国盛,张仁陟,水分胁迫下氮磷营养对小麦根系发育的影响,甘肃农业大学学报,2001,36(2):163-167
    78.李世娟,周殿玺,兰林旺,不同水分和氮素水平对冬小麦吸收肥料氮的影响,核农学报,2002,6(5):315-319
    79.田霄鸿,聂刚,李生秀,不同土壤层次供应水分和养分对玉米幼苗生长和吸收养分的影响,土壤通报,2002,33(4):263-267
    80.吴海卿,段爱旺,杨传福,冬小麦对不同土壤水分的生理和形态响应,华北农学报,2000,15(1):92-96
    81.薛菘,吴小平,冯彩平,不同氮素水平对旱地小麦叶片、叶绿素和糖含量的影响及其与产量的关系,干旱地区农业研究,1997,15(1):79-109
    82.李世清,李生秀,水肥配合对玉米产量和肥料效果的影响,干旱地区农业研究,1994,12(1):47-53
    83.梁银丽,康绍忠,张成娥,不同水分条件下小麦生长特性及氮磷营养的调节作用,干旱地区农业研究,1999,17(4):58-64
    84.郭晓维,赵春江,康书江,王纪华,水分对冬小麦形态、生理特性及产量的影响,华北农学报,2000,15(4):40-44
    85.王月福,于振文,潘庆民,李素美,王玉叶,水分胁迫对冬小麦不同抗旱性品种养分吸收分配和产量的影响,土壤肥料,1998,(6):3-6
    86.石岩,林琪,李素美,土壤水分胁迫对土壤养分分配及产量的影响,植物营养与肥料学报,1998,4,(1):50-56
    87.王昌全,曾莉,卢俊宇,土壤水分状况与水稻生长的关系,西南农业学报,1996,10(2):67-70
    88.肖焱波,李文学,段宗彦,张福锁,植物对硝态氮的吸收及其调控,中国农业科技导报,2002,4(2):56-59
    89.薛青武,陈培元,灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响,干旱地区农业研究,1989,(3):86-93
    90.谈建康,张亚丽,沈其荣,不同形态氮素比例对水稻麦苗期水分利用效率及其生物效应的影响,南京农业大学学报,2002,25(3):49-52
    
    
    91.肖凯,张树华,邹定辉,不同形态氮素营养对小麦光合特性的影响,作物学报,2000,26(1):53-58
    92.岳寿松,于振文,余松烈,不同生育期施氮对冬小麦氮素分配及叶片代谢的影响,作物学报,1998,24(6):811-815
    93.D.W.Wolfe,D.W.Henderson等,水分和氮素互作对玉米衰老的影响Ⅰ绿叶持续期、氮素分配及产量,国外农学:杂粮作物,1989,(5):15-20
    94.D.W.Wolfe,D.W.Henderson等,水分和氮素互作对玉米衰老的影响Ⅱ单个叶片光合作用衰减及其寿命,国外农学:杂粮作物,1989,(5):21-25
    95. Anderson D S, Teyker R H, Nitrogen form effects on early corn root morphological and anatomical development, J. Plant Nutr., 1991, 14(11): 1255-1266
    96. Evans J R. Nitrogen and photosynthesis in flag leaf of wheat. Plant Physiol 1983,72:297-302
    97. Foster E F, Pa Ja Rito A, Acosta-Gallegos, Moisture stress impact on N partitioning N remobilization and N use efficiency in beans, Agri. Science, 1995,124:27-37
    98. Frey N M, Dry matter accumulation in kernels of maize, Crop Sci., 1982,21:118-122
    99. Ghashghaie J and Saugier B, Effect of nitrogen deficiency on leaf photosynthetic response of tall fescue to water deficit, Plant Cell Eviron., 1989,12:261-271
    100. Hiffaker R C, Radin T, Kleinkopf G E et al. Effects of mild stress on enzymes of nitrite assimilation and of the carboxylative phase of photosynthesis in barley. Crop Sci., 1970,10:471-474
    101. Hunt E R,James JR,Weber A, Gates DM.Effects of nitrate application on Amaranthus powellii Wats: Ⅰ Optimal allocation of nitrogen for photosynthesis and stomatal apertuie amd conductance, Plant Physiol, 1985,79:619-624
    102. Ishihara K.Iida O, Hirasawa T, Ogura T, Relationship between nitrogen content and photosynthetic rate of rice plants with reference to stomatal aperture and conductance, Crop Sci., 1979,48:543-550
    103. Larsson M. Translocation of nitrogen in osmotically stressed wheat seedlings. Plant Cell Environ, 1992,12:140-144
    104. Legg B J, Day W, Lawlor D W, et al, The effects of drought on barley growth: Models and measurements showing the relative importance of leaf area and photosynthetic rate, Agric. Sci., 1979, 92;703-716
    105. Morgan J A, Jackson W A and Volk R J, Uptake and assimilation of nitrate by corn roots during and after induction of the nitrate uptake system, J. Exp. Bot., 1985,36(167):859-869
    106. M. O. Vouillot, J. M. Machet and J. M. Meynard, Relationship between the amount of
    
    reduced nitrogen accumulated in winter wheat shoots and the activity of nitrate reductase measured in situ, European Journal of Agronomy, 1996,5(12) :227-236
    107. Olivier Leleu, Christophe Vuylsteker, Jean-Fran9ois Tetu, Delphine Degrande, Luc Champolivier and Serge Rambour, Effect of two contrasted N fertilisations on rapeseed growth and nitrate metabolism, Plant, Physiology and Biochemistry, 2000,38(7) :639-645
    108. O'Toole J C, Ozbun J L and Wallace D H, Photosynthetic response to water stress in Phaseolus vulgaris, Plant, 1977,40:111-114
    109. Power J F. Soil management for efficient water use: Soil fertility, Limitation to efficient water use in crop production (Taylor H M, Jordan W R, Sinclair T R), ASA-CSSA-SSSA, 1983:461-470
    110. Sattelmacher B,J Gerendas, K Thorns, H Bruck and N H Bagdady, Interaction between root growth and mineral nutrition, Environmental and Experimental Botany, 1993,33(l):63-73
    111. Sexton B T, Moncrief J F, Rosen C J, Gupta S C and Cheng H, Optimizing nitrogen and irrigation inputs for corn based on bitrate leaching and uield on a coarse-textured soil, Environ. Qual., 1996,25:982-992
    112. Smiciklas K D, Below F E, Role of nitrogen form in determining yield of field-grown maize, Crop Sci., 1992,32:1220-1225
    113. Stanford G, Epstein E. Nitrogen mineralization water relation in soils, Soil Sci., 1974,38:103-106
    114. Strong W M, Barry G, The availability of soil and fertilizer phosphorus to wheat and rape at different water regimes, Aust. J. Soil Res., 1980,18:353-362
    115. Turner N. C., Begg J. E., Rawson H. M., et al, Agronomic and physiological responses of soybean and sorgham crop to water deficits. Ⅲ. Components of leaf water potential leaf conductance, 14CO2 photosynthesis and adaptation to water deficits, Aust, J. Plant Physiol., 1979,5: 179-194
    116. W. Claussen and F. Lenz, Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry, Plant and Soil, 1999,202:95-102
    117. Zu-Hua Yin, John A Raven, Influence of different nitrogen sources on nitrogen-and water-use efficiency, and carbon isotope discrimination, in C3 Triticum aestivum L. and C4 Zeamays L., Planta, 1998,205:574-580

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700