用户名: 密码: 验证码:
薄壁铸造及中温热处理时间对LPC系贮氢合金电化学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外NdFeB和汽车尾气催化剂市场对钕和铈的需求较大,国内稀土在提钕提铈后的剩余产品大量积压,妨碍了整个稀土产业的健康发展。本文针对这种情况,着重研究了这种无钕少铈稀土(LPC)在贮氢合金上应用的可行性。
     目前生产上主要采用锭厚在10~30mm的金属型铸造,而研究中则主要采用锭厚一般小于1mm的快淬或气体雾化的方法。本文用开口式H型三电极系统研究了薄壁铸造(壁厚3~10mm)和热处理对LPC系高钴(LPCNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3))和低钴(LPCNi_(3.55)Co_(0.4)Mn_(0.4)Al_(0.3)Fe_(0.15)Cu_(0.1)Si_(0.1))贮氢合金的电化学性能的影响,并用四川富铈混合稀土高钴合金(MmNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3))作对比。
     研究发现,高钴LPC铸态贮氢合金的综合电化学性能随着铸锭厚度的增加而改善,原因可归结为三个因素:晶胞体积的增大、晶体缺陷的减少和品格应力的降低。而低钴LPC铸态贮氢合金的综合电化学性能对壁厚不敏感,这可能是由于Cu、Fe和Si等替代元素的引入。
     对铸态合金进行热处理是提高贮氢合金综合电化学性能的有效手段。本文在前期研究的基础上,研究了中温热处理工艺(<900℃、不同保温时间)对铸态高钴和低钴LPC系贮氢合金电化学性能的影响。结果发现,退火处理能够提高无钕稀土LPC系高钴和低钴贮氢合金的放电容量,特别是大电流放电容量,改善合金的活化性能、循环稳定性和快速放电能力。不同壁厚的贮氢合金经中温热处理4小时后可获得相对最佳的综合电化学性能。铸件越薄,热处理效果
    
    四可大季2000低硕士母位论义
    越好。高钻合金退火后,各厚度合金性能已很接近。低钻合金退火后,各厚度
    性能得到了提升,但仍很接近。退火改善贮氢合金电化学性能的主要因素是组
    织应力的消除和铸造缺陷的减小。
     研究还发现,热处理时间过长(如10小时),反而会造成合金的综合电化
    学性能下降,因此选择适当的热处理制度对获得综合性能优异的合金至关重要。
     低钻合金退火后,除放电容量稍低之外,其余各项性能己超过高钻退火态
    合金的性能,这对降低合金中的钻含量从而降低贮氢合金的成本有一定的意义。
     LPC高钻合金退火后,其综合电化学性能己超过四川富饰混合稀土合金,
    这说明LPC混合稀土合金完全能够用作贮氢合金材料。
At present, Nd and Ce are required mostly by the utilization and development of NdFeB and automobile catalyst, the mountains of Nd-free LPC mischmetal, in which LPC represents the abbreviation of La -Pr-Ce mischmetal after the extraction of most Ce and Nd, hindered the healthy development of rare earth industries, so the feasibility of utilizing LPC mischmetal to produce hydrogen storage alloys was demonstrated.
    As we know, the thickness of hydrogen storage alloy ingots in practical production was popularly within 10-30mm and in research is usually less than 1mm, such as rapid quench and gas atomization. In this study, strip casting was introduced and the influence of the thickness of ingots within 3-10mm on the electrochemical properties of high-Co ( LPCNi3.55Co0.75Mn0.4Al0.3 ) and low-Co (LPCNi3.55Co0.4Mn0.4Al0.3Fe0.15Cu0.1Si0.1) LPC-type hydrogen storage alloys was investigated using open and H-type three-electrode system, and the Sichuan high-Co Mm-type hydrogen storage alloy (MmNi3.55Co0.75Mn0.4Al0.3) was used as comparison.
    It was found that the comprehensive electrochemical properties of high-Co hydrogen storage alloys were improved with the increase of the thickness of ingots. It was probably attributed to three factors: the expansion of unit cell volume, the decrease of the crystal defects and the diminishing of the internal stress. The
    
    
    
    electrochemical properties of low-Co LPC-type hydrogen storage alloys were insensitive to the thickness of ingots, which were maybe due to the substitution of Cu, Fe and Si for Co element.
    As is known to all, heat treatment, which was usually at high temperature(>1000 ℃), is an effective method to improve the comprehensive electrochemical properties of hydrogen storage alloys. In this work, the effect of heat treatment procedure, namely at middle temperature (<900℃) and different heat holding time, on the electrochemical properties of high-Co and low-Co LPC-type hydrogen storage alloys was studied. It was found that after heat treatment the maximum discharge capacities, especially those at high rate, of this two alloys were improved, and so the activation property, the cyclic life and high-rate discharge ratio (HRDR). The alloys with different thickness after heat-treated at middle temperature for 4 hours could show better comprehensive electrochemical properties. The thinner the thickness of ingots, the better the effect of heat treatment. The comprehension electrochemical properties of the high-Co LPC-type hydrogen storage alloys with different thickness have been improved to close to each other after heat treatment. The improved properties of low-Co alloys with different thickness were still approximate and insensitive to the thickness of ingots. The improvement of the electrochemical properties of hydrogen storage alloys by heat treatment was mainly attributed to the diminishing of internal stress and defects introduced by casting.
    It was also found that the excessive prolongation of annealing time, for example 10 hours, would deteriorate the comprehensive electrochemical properties of alloys, so it was extremely important to select an optimal heat treatment procedure to obtain alloys possessing excellent comprehensive electrochemical properties.
    Moreover, the properties of annealed low-Co LPC-type alloys exceeded those of high-Co LPC-type hydrogen storage alloys except for the discharge capacity. It was worth paying attention to reduce production costs of hydrogen storage alloys by lowering the Co content.
    The electrochemical properties of annealed high-Co LPC-type alloys with different thickness also exceeded those of Sichuan high-Co Mm-type alloys, which
    
    
    
    illustrated the fact that the Nd-free LPC mischmetal could be used to produce hydrogen storage alloys and would possess well performance.
引文
[1] 张名大.功能金属材料,辽宁科学技术出版社,1988
    [2] 唐晓鸣、吴应亮.无机化学学报,2001,17(2):161~167
    [3] 徐光宪.稀土.下册.贮氢材料.北京:冶金工业出版社,1995:286
    [4] 大角泰章.金属氢化物的性质与应用.吴永宽译.北京:化学工业出版社,1990:40
    [5] 郑青榕,顾安忠.新能源,2000,22(12):120~127
    [6] 肖建民.新能源,1993,15(7):7~13
    [7] 廖翠萍.新能源,1999,21(2):6~11
    [8] 廖小珍,刘文华,马紫峰.稀有金属,2001,25(2):139~143
    [9] 曹茂咸.功能材料概论.黑龙江:哈尔滨工业大学出版社,1999:33
    [10] 肖建民.化学工程,1990,18(2):61~66
    [11] 张永俊,孙俊才,于志伟等.金属功能材料,2000,8(1):9~13
    [12] Hempelmann R.. J. Less-Common Metals, 1984,101:69
    [13] 大角泰章.国外金属加工,1995,(3):29~37
    [14] Sakai T, et al. Phys Chem., 1989, 164:1539
    [15] Stover D., Heinen R.. J. Less-common Metals, 1984, 104:231
    [16] Zuttel A., Meli F., Schlapbach L., et al. J. Alloys and Compd., 1994, 206:31
    [17] Wei wang, Changpin Chen, Lixin Chen, et al. J. Alloys and Compd., 2002, 339:175~179
    [18] Kohno T., Yashida H., Kawashima E, et al. J. Alloys and Compd., 2000, 311:L5~L7
    [19] Spassov T., Rangelova V., Neykov N., J. Alloys and Compd., 2002, 334:219~223
    [20] Kadir K., Sakai T., et al. J. Alloys and Compd., 2000, 302:112~117
    [21] Lee H. H., Lee K. Y., Lee J.. J. Less-Common Metals, 1991,172-174:1184
    [22] Ovshinsky S. R., Fetcenko M. A., Ross J.. Science, 1993,260:176~181
    [23] 王国元,潘洪革,陈长聘.电源技术,2001,25(2):118~123
    [24] 大角泰章.金属氢化物的性质和应用.北京:化学工业出版社,1990:17.
    [26] Bitter H. E, Badcock C. C.. J. Electrochemical Soc., 1983, 130:193C.
    [27] 虞心南.物理学报,1985,7:403
    [28] 川野博志.日本第29回电池讨论要旨集,1998:89
    [29] 李全安.四川大学博士学位论文,2000.5
    
    
    [30] 王金国.四川大学硕士学位论文,2001.5
    [31] 李建文.四川大学硕士学位论文,2001.5
    [32] 涂铭旌,陈云贵,唐定骧等.ZL99 1 15177.1,1999
    [33] 涂铭旌,陈云贵,唐定骧等.ZL99 1 15178.x,1999
    [34] 涂铭旌,桑革,陈云贵等.ZL99 1 17373.2,1999
    [35] 涂铭旌,陈云贵,唐定骧等.ZL 99 2 51728.1,1999
    [36] Sandrock G.. J. Alloys and Compd., 1999, 293-295:877~888
    [37] Güther V., Otto A.. J. Alloys and Compd., 1999, 293-295:889~892
    [38] Sakai T., Uehara I., Ishikawa H.. J. Alloys and Compd., 1999, 293-295:762~769
    [39] Hong K.. J. Alloys and Compd., 2001, 321:307~313
    [40] Zhan F., Jiang L. J., Wu B. R., et al. J. Alloys and Compd., 1999, 293-295:804~808
    [41] 程菊,徐德明.金属功能材料,2000,7(5):13~15
    [42] 杨全民.金属热处理学报,2000,21(2):46~49
    [43] Geng M., Han J., Feng E, et al. International J. Hydrogen Energy,; 2000, 25:203~210
    [44] Züchner H.. J. Alloys and Compd., 2002, 330-332:2~7
    [45] Chen W. X.. International J. Hydrogen Energy, 2001, 26:603~608
    [46] Valφen L. O., Brateng R., Tunold R.. J. Alloys and Compd., 2002, 330-332:502~505
    [47] Suzuki Y., Haraki T., Uchida H.. J. Alloys and Compd., 2002, 330-332:488~491
    [48] Yuan X. X., Xu N.. J. Alloys and Compd., 2001, 316:113~117
    [49] Yuan X. Y., Xu N.. J. Alloys and Compd., 2001,329:115~120
    [50] 任可,雷永泉,陈立新等.金属学报,2000,36(4):364~369
    [51] Fang S., Zhou Z., Zhang J., et al. J. Alloys and Compd., 1999, 293-295:10~13
    [52] Inui H., Yamamoto T., Di Z., et al. J. Alloys and Compd., 1999, 293-295:140~145
    [53] Züchner H., Kintrup J., Dobrileit R., et al. J. Alloys and Compd., 1999, 293-295:202~212
    [54] Züttel A., Güther V., Otto A., et al. J. Alloys and Compd., 1999, 293-295:663~669
    [55] 罗永春,康龙,张昌青等,中国有色金属学报,2000,10(4):480~483
    [56] 雷永泉,孙大林,吴京等.电源技术,1997,21(2):61~64
    [57] Sakai T., Yoshinaga H., Miyamura H., et al. J. Alloys and Compd., 1992, 180:37~54
    [58] 王超群,靳红梅,李国勋等.电源技术,1998,22(2):65~67
    [59] Fukumoto Y., Miyamoto M., Inoue H., et al. J. Alloys and Compd., 1996, 240:76~78
    
    
    [60] Iwakura C., Miyamoto M., Inoue H., et al. J. Alloys and Compd., 1997, 259:129~131
    [61] Wang Y. B., Northwood D. O.. Meterials Science and Technology, 1988, 4:97~100
    [62] Maeland A. J., Andresen A. F., Videm K.. J. Less-Common Metals, 1976, 45:347~350
    [63] Yukawa H., Moringa M., Takahashi Y.. J. Alloys and Compd., 1997, 253-254:322~325
    [64] Smith G., Goudy A. J.. J. Alloys and Compd., 2001, 316:93~98
    [65] Wu M.S., Wu H.R., Wang Y.Y., et al. J. Alloys and Compd., 2000, 302:248~257
    [66] Chen W.X., Qi J.Q., Chen Y., et al. J. Alloys and Compd., 1999, 293-295:728~733
    [67] Notten P. H. L., Daams J.L.C.. Einerhand R. E. F. J. Alloys and Compd., 1994, 210: 233~241
    [68] Notten P. H. L., Einerhand R. E. F., Daams J. L. C.. J. Alloys and Compd., 1994, 210: 221~232
    [69] Zhang L. Y.. J. Alloys Compd., 1999, 293~295:621~625
    [70] Shu K. Y., Lei Y. Q., Yang X. G., et al. J. Alloys Compd., 1999, 293~295:756~761
    [71] 雷永泉.贮氢合金电极材料的研究进展.见:镍氢电池产业化开发研讨会文集.国家高技术新型贮能材料工程开发中心,1996,38
    [72] Sakai T., Miyamura H., Kykiyama N., et al. Z. fur physik chemi, 1994, 183:333
    [73] Miyamura H., Sakai T., Kykiyama N., et al. J. Alloys Compd., 1993,192:176~178
    [74] Sakai T., Yoshinaga H., Miyamura H., et al. J. Alloys and Compd., 1992, 180:37~54
    [75] Sakai T., Hazama T., Miyamura H., et al. J. Less-Common Met, 1991, 172~174:1175~1184
    [76] Koushiro K., Hara M., Takeshita Y., et al. J. Non-crystal Solids, 1988, 101:187
    [77] Li C. J., Wan X. L., Wang C. Y.. J. Alloys Compd., 1999, 293~295:742~746
    [78] 舒康颖,雷永泉,王启东.材料科学与工程,1999,17(3):14~19
    [79] Lichtonberg F., et al. J. Alloys Compd., 1997, 253~254:570~573
    [80] Züttel A., et al. J. Alloys Compd., 1997, 253~254:626~628
    [81] Solonin Y. M., et al. J. Alloys Compd., 1997, 253~254:594~597
    [82] Bowman R. C., et al. J. Alloys Compd., 1997, 253~254:613
    [83] 郭宏,张少明,石力开等.电池,2000,30(3):120~122
    [84] Zhang L. Y., Klein M., Czajkowshi B., et al. J. Alloys Compd., 1999, 293~295:608~612
    [85] Li R., Wu J. M., Wang X. L.. J. Alloys Compd., 2000, 311:40~45
    [86] 勒红梅,李国勋等.电源技术,1997,21(2):58
    
    
    [87] 崔舜.稀有金属,1999,23(3):201
    [88] Hu W. K., Ye Z., Noreus D.. J. Alloys Compd., 1998, 280:314~320
    [89] Hu W. K., Kim D. M., Jeon S. W.. J. Alloys Compd., 1998, 270:255~264
    [90] 李传键,王新林,吴健民等.电池,1997,27(5):209
    [91] Yasada K.. J. Alloys Compd., 1997, 253~254:621~625
    [92] Yamamoto M., Kanda M.. J. Alloys Compd., 1997, 253~254:660~664
    [93] 马志鸿,雷永泉,陈立新等.稀有金属材料与工程,2000,29(4):255~257
    [94] Notten P. H. L.. Advanced Materials, 1991, 3:343
    [95] Notten P. H. L., Hokkeling P.. J. Electrochemie Soci, 1991, 138:1877-1879
    [96] Notton P. H. L., Daames J. L., Einerhand R. E. F. Berichit der Bunsen-Gesellschaft fǔr physik chemi, 1992, 96:656~667
    [97] Notton P. H. L., Einerhand R. E. F, Daames J. L.. Zeitschrift fǔr physik chemie, 1993. 942~952:1~3
    [98] Nakamura Y., Nakamura H., Fujitani S., et al. J. Alloys and Compd., 1994, 210:299~303
    [99] Li C. J., Wang X. L.. J. Alloys and Compd., 1999, 282:225~230
    [100] Li C. J., Wang X. L.. J. Alloys Compd., 1998, 270:242~245
    [101] Li C. J., Wang X. L.. J. Alloys Compd., 1998, 270:246~254
    [102] Li C. J., Wang X. L., Wang C. Y.. J. Alloys and Compd., 1998, 266:300~306
    [103] 李传建,王新林,李岫梅.金属学报,1998,34:289~292
    [104] Li C. J., Wang X. L.. J. Alloys and Compd., 1998, 274:278~283
    [105] Huang Y. X., Ye H., Zhang H.. J. Alloys Compd., 2002, 330~332:831~83
    [106] Tang W. Z., Sun G. F. J. Alloys and Compd., 1994, 203:195~198
    [107] Wu C.L., Chen Y.G., Li E, et al. J. Rare Earths, 2002, 20(5): 517~521
    [108] 李锋,陈云贵,涂铭旌.中国有色金属学报,2002,12(S2):103~107
    [109] 任可,雷永全,陈立新等.金属学报,2000,36(4):364
    [110] 舒康颖,雷永泉等.材料科学与工程.1999,17(3):14~19
    [111] Zhang L. Y.. J. Alloys and Compd., 1999, 293~295:621~625
    [112] 董清海,颜广炅,余成洲.电源技术,2000,24(5):306~310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700