用户名: 密码: 验证码:
奶牛MHC多态性及其与牛乳中体细胞数关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主要组织相容性复合物(MHC)是由紧密连锁的高度多态的基因位点所组成的染色体上的一个遗传区域,它在脊椎动物机体的免疫系统中发挥着非常重要的作用。本研究采用PCR-RFLP方法对牛乳中体细胞数各不相同的北京荷斯坦母牛MHC Ⅱ类基因座位DRB3进行了分子遗传学检测,克隆了其第二个外显子的全长核苷酸序列,并将北京荷斯坦牛BoLA-DRB3基因核苷酸序列和氨基酸序列与蒙古牛、人类HLA-DRB3、瑞典红白花牛、蒙古绵羊、西班牙山羊DRB3基因核苷酸序列以及氨基酸序列进行了同源性比较。得到以下结果:
     1.北京荷斯坦牛DRB3基因第二外显子的第150,154,173,182和202位的碱基存在多态性,其中BstYⅠ和HaeⅢ酶切位点分别由2(A、B)和5(A、B、C、D、F)种等位基因控制,基因频率分别为:0.20,0.80;0.6570,0.0990,0.0290,0.1739,0.0411。综合两种酶切结果,共检测到北京荷斯坦牛DRB3基因的7种等位基因。x~2适合性检验表明,北京荷斯坦牛DRB3基因的BstY Ⅰ酶切位点已经达到了Hardy-Weinberg平衡状态(P>0.05),Hae Ⅲ酶切位点未达到Hardy-Weinberg平衡状态(P<0.01)。
     2.利用最小二乘法拟合线性模型对不同标记基因型间体细胞数差异显著性检验结果表明:Hae Ⅲ酶切基因型AD所对应的体细胞数评分最小二乘平均值最低,基
    
    扬州大学硕士学位论文
    因型AC所对应的最小二乘平均值最高,但它们之间的差异不显著;AD基因型所
    对应的体细胞数评分最小二乘平均值显著低于AA基因型所对应的体细胞数评分
    最小二乘平均值(P<0.05);体细胞评分最小二乘平均值在Haelll其余基因型之间
    没有显著差异。Hae mAA基因型与高的体细胞数评分显著相关。BstYI酶切基因
    型AA所对应的体细胞数评分最小二乘平均值最低,基因型BB所对应的体细胞数
    评分最小二乘平均值最高:并且AA基因型所对应的体细胞数评分最小二乘平均
    值显著低于AB、BB基因型所对应的体细胞数评分最小二乘平均值(P<0.01);体
    细胞数评分最小二乘平均值在BstYI其余基因型之间没有显著差异。BstYI酶切
    基因型BB与高的体细胞数评分显著相关。
     3.北京荷斯坦牛DRB3基因核昔酸序列以及氨基酸序列与蒙古牛、人类
    HLA·DRB3、瑞典红白花牛、蒙古绵羊、西班牙山羊之间的DRB3基因核昔酸序
    列同源性以及氨基酸序列同源性均比较高。
MHC is a chromosomal region consisting of a group of closely linked loci which are highly polymorphic, and plays a central role in the immune system. The molecular genetic polymorphisms were investigated for MHC-DRB3 locus in Beijing Holstein cow by PCR-RFLP. Furthermore, the second exon of DRB3 was cloned and sequenced after amplication. Homologies of the nucleotide sequence and amonia acid sequence of the fragment were compared among Mongolian cattle, Human Swedish Red and White cattle Mongolian Sheep and Spanish goat.Following were the results.
    1. By digesting the PCR product with BstY I and Hae III, there were five polymorphic sites at position 150, 154,173, 182, and 202 in the second exon of Beijing Holstein cow DRB3 gene. 2 alleles and 5 alleles were found respectively, gene frequency was 0.20, 0.80; 0.6570, 0.0990, 0.0290, 0.1739, 0.0411. Statistical results showed that polymorphic locus for BstY I of Beijing Holstein cow DRB3 locus fitted with Hardy-Weinberg equilibrium (P>0.05), polymorphic locus for Hae III of Beijing Holstein cow DRB3 locus didn't fit with Hardy-Weinberg equilibrium (P<0.01).
    2. Least squares mean of Somatic Cell Score for Hae III AC genotype was the highest, and Least squares mean of Somatic Cell Score for Hae III AD genotype was the
    
    
    
    lowest; Least squares mean of Somatic Cell Score for Hae III AD genotype was significantly lower than those for Hae III AA genotype (P<0.05) in cow populations; There were no significant correlations among other genotypes in cow populations.Least squares mean of Somatic Cell Score(SCS) for BstY I BB genotype is the highest, and Least squares mean of Somatic Cell Score for BstY I AA genotype is the lowest. Least squares mean of Somatic Cell Score for BstY I AA genotype was significantly lower than those for BstY I AB BB genotype (P<0.01) in cow populations. There were no significant correlations among other genotypes in cow populations.
    3. Comparative analysis showed that the homologies of the nucleotide sequence and amonia acid sequence of DRB3 gene between Beijing Holstein cow and Mongolian, Human, Swedish Red and White breed, Mongolian Sheep and Spanish goat are high.
引文
[1] 卜仕金,陈杖榴,冯淇辉.奶牛乳房炎的抗菌药物防治.兽药与饲料添加剂,1999,4(3):14~16.
    [2] 卜仕金,陈杖榴,冯淇辉.奶牛乳房炎的抗菌药物防治.兽药与饲料添加剂,1999,4(4):18~20.
    [3] 储明星,师守堃.奶牛乳房和乳头生物学形态与体细胞数(乳房炎)之间的关系.黑龙江畜牧兽医,1993,(12):35~37.
    [4] 储明星,师守堃.奶牛体型和体细胞数(乳房炎)之间关系的研究进展.畜牧与兽医,1995,(1):35~37.
    [5] 储明星.牛奶中体细胞数及其在奶牛育种中的应用.中国奶牛,1997,(6):49~51.
    [6] 储明星.奶牛乳房炎的危害及其发生规律与防治.中国奶牛,1999,(4):55~56.
    [7] 储明星,石万海,邝霞,等.浅谈奶牛乳房炎.中国奶牛,2001,(3):39~40.
    [8] 李国江,邹风驰,宋文庭,等.奶牛隐性乳房炎的检测与评估.中国奶牛,1998,(3):16~17.
    [9] (?)圣栋.《分子生物学实验技术》 1993,北京:高等教育出版社.
    [10] 萨姆布鲁克,J.等,分子克隆实验指南(第二版),北京:科学出版社.1992.
    [11] 孙东晓.中国部分反刍家畜MHC分子遗传多态性及其序列分析.中国农业大学博士学位论文.1999.
    [12] 杨章平,王健,丁焕峰,等.奶牛隐性乳房炎发生规律的研究.中国奶牛,1998,(1):18~21
    [13] Andersson L, Rask L. Characterization of the MHC class Ⅱ region in cattle. Immunogenetics, 1986a, 7:110~120.
    [14] Andersson L. Genomic hybridization of bovine class Ⅱ MHC genes: 2. Extensive polymorphisms of DQA and DQB genes. Animal Genetics, 1986b, 17: 95~112.
    [15] Andersson L, Bohme J, Peterson P A, et al. Genomic hybridization of bovine class Ⅱ major histocompatibility genes: 2.Polymorphism of DR genes and linkage disequilibrium in the DQ-DR region. Anim Genet, 1986, 17: 295~304.
    ~
    
    
    [16] Andersson L, Lunden A, Sigurdardottir, et al. Linkage relationship in the bovine MHC region, high recombination frequency between class Ⅱ subregions. Immunogenetics ,1988, 27: 273~280.
    [17] Aarestrup FM, Jensen N E, φ stergard H. Analysis of associations between major histocompatibility complex(BoLA)class Ⅰ haplopes and subclinical mastitis of dairy cows. J Dairy Sci, 1995, 78: 1684~1692.
    [18] Aida Y, Niimi M, Asahina M, Okada K, Nakai Y, Ogimoto K. Identification of a new bovine MHC class Ⅱ DRB allele by nucleotide sequencing and an analysis of phylogenetic relationships.Biochem Biophys Res Commun 1995 Apr 26;209(3):981~988.
    [19] Aldridge B M, McGuirk S M, Clark R J, et al. Denaturing gradient gel electrophoresis: a rapid method for differentiating BoLA-DRB3 alleles. Animal Genetics, 1998, 29:389~394.
    [20] Amills M, Francino O. Nest PCR allows the characterization of Taq Ⅰ and Pst Ⅰ RFLPs in the second exon of the Caprine MHC class Ⅱ DRB3 gene. Veterinary Immunology and Immunopathology, 1995, 48:313~321.
    [21] Amills M,Ramiya V, Norimine J,et al. The major histocompatibility complex of ruminants. Rev. Sci. Tech. Off.Int. Epiz.1998,17:108~120.
    [22] Burke M G, Stone R T, Muggli-cockett N E. Nucleotide sequence and northern analysis of a bovine major histocompatibility class Ⅱ DR beta-like cDNA. Anita Genet 1991 ;22(4):343~352.
    [23] Coffey E M, Vinson W E, Pearson R E. Potential of somatic cell concentration in milk as a sire selection criterion to reduce mastitis in dairy cattle. J. Dairy Sci., 1986, 69: 2163~2172.
    [24] Da Mota A F, Gabriel J E, Martinez M L, et al. Distribution of bovine lymphocyte antigen(BoLA-DRB3) alleles in Brazilian dairy cattle. Immunogenet, 2002 Jun, 29(3): 223~227.
    [25] Davies C J, Andersson L, Ellis S A, et al. Nomenclature for factors of the BoLA system ,1996:report of the ISAG BoLA Nomenclature Committee.Animal Genetics, 28:159~
    .~
    
    168.
    [26] Dietz A B, Detilleux J C, Freeman A E, Kelley D H, Stabel J R, Kehrli M E Jr. Genetic association of bovine lymphocyte antigen DRB3 alleles with immunological traits of Holstein cattle. J Dairy Sci 1997 Feb;80(2):400~405.
    [27] Dietz A B, Cohen N D Timms L, et al. Bovine lympHocyte antigen class Ⅱ alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. J Dairy Sci, 1997, 80: 406~412.
    [28] Dikiniene N, Aida Y. Cattle cDNA clones encoding MHC class Ⅱ DQB1 and DQB2 genes. Immunogenetics, 42: 75.
    [29] Davies C J, Joosten I, Andersson L, et al. Polymorphism of bovine MHC class Ⅱ genes. Joint report of the Fifth International Bovine Lymphocyte Antigen (BoLA) Workshop, Interlaken, Switzerland, 1 August 1992. Eur J Immunogenet , 1994, Aug, 21(4): 259~289.
    [30] Ellegren H, Davies C J, Andersson L. Strong association between polymorphisms in an intronic microsatellite and in the coding sequence of the BoLA-DRB3 gene: implications for microsatellite stability and PCR-based DRB3 typing. Anita Genet 1993 Aug;24(4):269~275.
    [31] Emanuelson U, Danell B, PHilipsson J. Genetic parameters for clinical mastitis, somatic cell counts, and milk production estimated by multiple-trait restricted maximum likelihood. J. Dairy Sci., 1988, 71: 467~476.
    [32] Ernst L K, Sulimova G E, Orlova A R,et al. Features of the distribution of BoLA-A antigens and alleles of the BoLA-DRB3 gene in Black Pied cattle in relation to association with leukemia. Genetika 1997 Jan;33(1):87~95.
    [33] Gelhaus A, Schnittger L, Mehlitz D, et al. Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles. Animal Genetics, 1995, 26: 147~153.
    [34] Gilliespie B E, Jayarao B M, Dowlen H H,et al. Analysis and frequency of bovine lymphocyte antigen DRB3.2 alleles in Jersey cows. J Dairy Sci 1999 Sep;82(9):2049~2053.
    [35] Giovambattista G, Golijow C D, Dulou, F N. et al. Gene frequencies of DRB3.2 locus of Argentine Creole cattle. Animal Genetics, 1996, 27: 55~56.
    [36] Giovambattista G, Ripoli M V, Peral-Garcia P. Indigenous domestic breeds as reservoirs of
    
    genetic diversity: the Argentinean Creole cattle. Anim Genet 2001 Oct;32(5):240~247.
    [37] Groenen M A, van der Poel J J, Dijkhof R J, et al. Cloning of the bovine major histocompatibility complex class Ⅱ gene. Animal Genetics, 1989, 20: 267~278.
    [38] Groenen M A, van der Poel J J, Dijkhof R J, et al. The nucleotide sequence of bovine MHC class Ⅱ DQB and DRB genes. Immunogenetics, 1990, 31(1): 37~44.
    [39] Horin P, Matiasovic J, Trtkova K, et al. BoLA DYA polymorphism in Czech cattle. Exp Clin Immunogenet 1998;15(1):56~60
    [40] Ledwidge S A, Mallard B A, Gibson J P, et al. Multi-primer target PCR for rapid identification of bovine DRB3 alleles. Animal Genetics, 2001, Aug, 32: 219~221.
    [41] Lund T, Miglior F, Dekkers J C M, et al. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest. Prod. Sci., 1994, 39: 243~251.
    [42] Lunden A, Sigurdardottir S, Edfors-lilja I, et al. The relationship between bovine major histoeompatibility complex class Ⅱ polymorphism and disease studied by use of bull breeding values. Animal Genetics, 1990, 21: 221~232.
    [43] Marello K L, Gallagher A, Mckeever D J, et al. Expression of multiple DQB genes in Bos indicus. Animal Genetics, 26 : 345~349.
    [44] Maillard J C, Renard C, Chardon P, et al. Characterization of 18 new BoLA-DRB3 alleles. Animal Genetics, 30: 200~203.
    [45] Maillard J C, Chantal I, Berthier D. Sequencing of four new BoLA-DRB3 and six new BoLA-DQB alleles. Anim Genet 2001 Feb;32(1):44~46.
    [46] Mejdell C M, Lie φ, Solbu, H., et al. Association of major histocompatibility complex antigens (BoLA-A) with AI bull progeny test results for mastitis, ketosis and fertility in Norwegian cattle. Animal Genetics, 1994, 25:99~104.
    [47] Mikko S, Andersson L. Extensive MHC calss Ⅱ DRB3 diversity in African and European cattle. Immunogeneties, 1995, 42 : 408~413.
    [48] Miretti M M, Ferro J A, Lara M A, et al. Restriction fragment length polymorphism(RFLP) in
    ..
    
    exert 2 of the BoLA-DRB3 gone in South American cattle. Biochem Genet, 2001 Oct, 39: 311~324.
    [49] Morris B G, Spencer M C, Stabile S, Dodd J N. Restriction fragment length polymorphism (RFLP) of exen 2 of the MhcBibi-DRB3 gene in American bison (Bison bison). A nim Genet 1994 Jun;25 Suppl 1:91~93.
    [50] Muggli-Cockett N E, Stone RT. Identification of genetic variation in the bovine major histoeompatibilitycomplex DR beta-like genes using sequenced bovine genomic probes. Anita Genet, 1988, 19(3): 213~225.
    [51] Muggli-cockett N E, Stone R T. Partial nucleotide sequence of a bovine major histoeompatibility class Ⅱ DRbeta-like gene. Anim Genet, 1989, 20(4): 361~369.
    [52] Nasir L, Ndiaye M, Seely C, et al. Sequence polymorpHism in the bovine major histoeompatibility complex DQB loci. Animal Genetics, 28: 441~445.
    [53] Oddgeirsson O, Simpson S P, Morgan A L G, et al. Relationship between the bovine major histoeompatibility complex (BoLA),erythroeyte markers and susceptibility to mastitis in Icelandic cattle. Animal Genetics, 1988, 19:11~16.
    [54] Philipsson J, Ral G, Berglund B. Somatic cell count as a selection criterion for mastitis resistance in dairy cattle. Livest.Prod. Sci., 1995, 41: 195~200.
    [55] Reneau J K. Effective use of dairy herd improvement somatic cell counts in mastitis control. J. Dairy Sci., 1986, 69: 1708~1720.
    [56] Russell G C, Davies C J, Andersson L, et al. BoLA class Ⅱ nueleotide sequences, 1996:report of the ISAG BoLA Nomenclature Committee. Animal Genetics, 1997, 28, 169~180.
    [57] Russell G C, Marello K L, Gallagher A, et al. Amplification and sequencing of expressed DRB3 second exons from Bos indicus, Immunogeneties ,39,432~436.
    [58] Russell G C, Fraser D C, Craigmile S. Sequence and transfection of BoLA-DRB3 cDNAs. Anim Genet 2000 Jun;31 (3):219~2221
    [59] Sena L, Schneider M P, Brenig B, et al. Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles. Anita Genet
    
    2003 Feb;34(1): 1~10
    [60] Schutz M M. Genetic evaluation of somatic cell scores for United States dairy cattle. J. Dairy Sci., 1994a, 77:2113~2129.
    [61] Schutz M M, VanRaden P M, Wiggans G R. Genetic variation in lactation means of somatic cell scores for six breeds of dairy cattle. J. Dairy Sci., 1994, 77: 284~293.
    [62] Sharif S, Mallard B A, Wikie B N, et al, Association of the bovine MHC DRB3 alleles with occurrence of disease and mild somatic cell score in Canadian dairy cattle. Animal Genetics, 1998, 29: 85~193.
    [63] Sharif S, Mallard B A, Sargeant J M. Presence of glutamine at position 74 of pocket 4 in the BoLA-DR antigen binding groove is associated with occurrence of clinical mastitis caused by Staphylococcus species. Vet Immunol Immunopathol 2000 Oct 31 ;76(3-4):231~238.
    [64] Sharif S, Mallard B A, Wilkie B N, Characterization of naturally processed and presented peptides associated with bovine major histocompatibility complex (BoLA) class Ⅱ DR molecules.Anita Genet 2003 Apr;34(2):116~123
    [65] Shook G E. Approaches to summarizing somatic cell counts which improve interpretability. Proc. Natl. Mastitis Countil, Arlington, VA, 1982, pp150~166.
    [66] Shook G E. Selection for disease resistance. J. Dairy Sci., 1989, 72:1349~1362.
    [67] Shook G E. Genetic Improvement of Mastitis Through Selection on Somatic Cell Count, Veterinary Clinics of North America: Food Animal Practice, Volume 9,No.3,November 1993,563~581.
    [68] Shook GE, Schutz M M. Selection on somatic cell score to improve resistance to mastitis in the United States. J. Dairy Sci., 1994, 77: 648~658.
    [69] Sigurdardattir S, Lunden A, Andersson L. Restriction fragment length polymorphism of DQ and DR class Ⅱgenes of the bovine major histocompatibility complex. Animal Genetics, 1988, 19:133~150.
    [70] Sigurdardottir S, Borsch C, Gustafsson K, et al. Cloning and sequence analysis of 14 DRB alleles of the bovine MHC by using the PCR. Animal Genetics, 1991, 22: 199~200.
    
    
    [71] Sigurdardottir S, Borsch C, Gustafsson K, et al. Gene duplications and sequence polymorphism of bovine class Ⅱ DQB genes, Immunogenetics, 1992, 35(3): 205~213.
    [72] Simpson S P, Oddgeirsson O, Jonmundsson J V, et al. Associations between the bovine major histocompatibility complex(BoLA) and milk production in Icelandic dairy cattle. Journal of Dairy Research, 1990, 57: 4437~4440.
    [73] Sitte K, East I J, Lavin M.F, et al. Identification and characterization of new BoLA-DRB3 alleles by heteroduplex analysis and direct sequencing. Animal Genetics, 1995, 26:413~417.
    [74] Sitte K, East I J, Jazwinska E C. Detection of a common BoLA-DRB3 deletion by sequence-specific oligonucleotide typing. Animal Genetics, 1996, 27: 271~273.
    [75] Solbu H, Spooner R, Lie φ. A possible influence of the bovine major histocompatibility complex (BoLA) on mastitis. In: Proceedings of the 2nd World Congress on Genetics Applied to Livestock Production, Madrid, Spain, 1982, 7:3.68~371.
    [76] Solbu H, Lie φ. Selection for disease resistance in dairy cattle. In: Proceedings of the 4th World Congress on Genetics Applied to Livestock Production, Edinburgh, UK, 1990, 16: 445~448.
    [77] Spooner R, Morgan A, Sales D, et al. MHC associations with mastitis. Animal Genetics, 1988,19 (Suppl. 1): 57~58.
    [78] Starkenburg R J, Hansen L B, Kehrli M E Jr, et al. Frequencies and effects of alternative DRB3.2 alleles of BoLA for Holsteins in milk selection and control lines. J Dairy Sci,1997, 80: 3411~3419.
    [79] Stone R T, Muggli-cockett N E. Nucleotide sequence of the second exon of a BoLA-DQB gene. Animal Genetics, 1992, 23: 273~274.
    [80] Sulimova G E, Udina I G, Shaikhaev G O,et al. DNA polymorphism of the BoLA-DRB3 gene in cattle in connection with resistance and susceptibility to leukemia. Genetika 1995 Sep;31(9): 1294~1299.
    [81] Takeshima S, Ikegami S M, Morita M, et al. Identification of new cattle BoLA-DRB3 alleles by sequence-based typing. Immunogenetics,2001, 53:74~81.
    ..
    
    
    [82] Takeshima S, Nakai Y, Ohta M, Aida Y, et al. Short Communication: Characterization of DRB3 Alleles in the MHC of Japanese Shorthorn Cattle by Polymerase Chain Reaction-Sequence-Based Typing. J. Dairy Sci., 2002,85:1630~1632.
    [83] Udina I G, Karamysheva E E, Sulimova G E, et al. Comparative analysis of Ayrshire and BlackPied cattle breeds by histocompatibilily markers. Genetika 1998 Dec;34(12): 1668~1674.
    [84] Van Eijk M J, Stewart-Haynes J A, Lewin H A, et al. Extensive polymorphism of the BolA-DRB3 gene distinguished by PCR-RFLP. Animal Genetics, 1992; 23:483~496.
    [85] Weigel K A, Freeman A E. Association of class I bovine lymphocyte antigen complex alleles with health and production traits in dairy cattle. J Dairy Sci, 1990, 73: 2538~2546.
    [86] Weller J I, Saran A, Zeliger Y. Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. J. Dairy Sci., 1992, 75:2532~2540.
    [87] Xu A, van Eijk M J, Park C, Lewin HA Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J Immunol 1993 Dec 15;151 (12):6977~6985.
    [88] Xu A, Park C, Lewin H A, et al. Both DQB genes are expressed in BoLA haplotypes carrying a duplicated DQ region. Immunogenetics, 1994, 39(5):316~321.
    [89] Zinkernagel R M, Doherty P C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol, 1979, 27: 151~177.
    [90] Zhang W C, Dekkers J C M., Banes G, et al. Adjustment factors and genetic evaluation for somatic cell score and relationships with other traits of Canadian Holsteins. J. Dairy Sci., 1994, 77: 659~665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700