用户名: 密码: 验证码:
小区分质供水净水工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,自来水一直是城市居民饮水的主要来源。随着城市的工业化及经济的发展,自来水水源严重恶化,水中污染物的种类和数量急剧增加。传统的混凝、沉淀、过滤等工艺主要去除水中的悬浮物和胶体,对溶解性有机物去除效果甚微。尤其是加氯消毒工艺,由于过滤出水中的溶解性有机物的存在,加氯后与氯作用产生对人体有害的“三致”物质。另外城市输水管网使用年限过久,以及二次供水中使用的水箱和水池管理不善,造成供水二次污染日趋严重。因此提高自来水水质是目前保证人们身体健康所势在必行的事情。限于经济发展的水平,对现有的供水设备、制水工艺和管网作全面改造是很难实现的。并且,由于生活饮用水只占城市用水的一小部分,寻找一种装置占地面积小、维护管理方便、处理水质稳定的工艺方法,对专供饮用的少量自来水进行深度处理,获得优质的饮用水是解决水源污染,提高生活质量的捷径。
     为了保证饮用水的卫生,满足社会需要,在一些经济比较发达的地区兴起了对人口居住密集的住宅小区实行分质供水。所谓分质供水,即对自来水进行深度处理,使其水质达到可以直接饮用的标准,通过另设一套独立循环管网将净化后的优质水送入用户家中,以确保水质卫生、稳定、新鲜,供用户直接饮用。
     本课题结合广州市科委的实际科研项目,以广州市区管网末端自来水为原水,探讨小区净水站内水处理工艺流程。在对目前饮用水深度处理技术进行分析比较的基础上,通过中试研究确定了用于分质供水水质净化的较优化工艺——砂滤+活性炭吸附+纳滤。试验表明,该工艺对水中的高锰酸钾指数、氨氮、挥发性有机物等有理想的去除效果。另外,试验对处理系统中的炭滤器滤速、纳滤膜工作压力以及浓水回流率等运行参数的确定作了探讨性的研究。试验结果表明,活性炭过滤器滤速控制在6m/h,纳滤膜工作压力为0.5MPa,浓水回流率为40%时,系统出水水质较好。
     在本课题试验研究的基础上,广州市益民饮用水技术有限公司在珠江帝景小区净水站设计中采用了这一处理工艺流程。经过半年多的调试运行,该系统表现出良好的处理性能。系统出水经出水广州市卫生检测中心多次检测所有指标都达到了国家《饮用净水水质标准》(CJ94-1999)。另外,本文根据该工程的基建投资、设备投资与运行管理费用等计算了制水成本,约为20元/m~3。
     本研究为小区分质供水工程中水处理工艺的选择提供了有力的试验依据和基础,对分质供水工程的运行有积极的指导意义。
For a long time, tap water is the main source of the civil drinking water .With the industrialization and development of economic, the sources of drinking water plants deteriorated seriously. The kinds and quantity of the contaminants increased rapidly. Conventional processing units, such as coagulation-flocculation, sedimentation, filtration etc., are employed to get rid of the suspending and colloid in the water. They are incapable of removing the organic micropollutants from water effectively. Especially the chlorination-disinfection unit brings on the formation of potentially carcinogenic disinfection by-products, which is bad to health. For the long using time of the water pipes in the cities and poor supervise of the water tanks and pools which are used for second supply ,the second pollution is more and more serious . So to improve the quality of tap water is what we should do to insure people's health. Due to the limitation of economic status, it is impossible to rebuild the existing water supply facilities and water pipes completely. It's also difficult to change the conventional water treatment technology of all water work in a short period. What's more, the water used for drinking is little proportion in the whole urban water supply. Therefore, a small scale centralized drinking water treatment system which produces a kind of high quality drinking water will be needed. It is also a short cut to solve the pollution of water source and improve the human living condition.
    At present in some economically developed areas in China, dual water supply system which supplys water separably for different purposes advents in some new residential buildings. The system deals with drinking water with advanced treatment technologies to meet the high quality standard so that people can drink water directly. The treated water is carried by other cycle pipes to the domestic.
    As part of a practical scientific research item from science administration of Guangzhou, this study aims to discuss water treatment process in residential water supply in Guangzhou. Based on a detailed analysis and comparation of present advanced treatment technologies, a more optimal purification process, which consists of sand filtration, GAC(Granular Active Carbon) adsorption, and NF membrane has been suggested by pilot research. The tests indicated this process effective in removing CODMn, ammonia, volatile organic and so on. In addition, some tests on the function parameters such as the filtering velocity of the GAC filter, the function pressure of the NF membrane and the using rate of the discharged water, have been done to determine the optimal values. It is found that the whole purification process performs safely and steadily in product water quality when the values of mentioned parameters are 6m/h, 0.5MPa and 40% respectively.
    Based on the study, the above-mentioned treatment process has been adopted in the design of dedicated drinking water system in Zhujingdijing residential district. Through more than half of year's operation, the system shows its good treatment ability .The
    
    
    
    produced water meets the requirement of "the Water Quality Standard for fine drinking water (CJ94-1999)". By the estimation, the cost of the treated water is about 20 RMB per cubic meter.
    This study supplies strong trial reference and foundation for practice and can direct the operation of dedicated drinking water system.
引文
[1] 徐中海.饮水的深度净化与健康.西藏医药杂志.2001,22(1):39~41
    [2] 曹凤中.戴天有等编译.地表水污染及其控制.北京:中国环境科学出版社,1993.12
    [3] 王占生.刘文君编著.微污染水源饮用水处理.北京:中国建筑工业出版社,1999.10
    [4] 严煦世.范瑾初.给水工程.第四版.北京:中国建筑工业出版社,1999.8
    [5] 国家环境保护总局.2000年中国环境状况公报.中国环境保护网:http://zhb.gov.cn,2001.12
    [6] Rook, JJ., Formation of Haloforms during Chlorination of Natural Water. Water Treatment and Examination, 1974,23:234~243
    [7] USEPA, Disinfectants and Disinfection Byproducts. Final Rule. Fed. Reg., Dec.16, 1998
    [8] 袁志彬,王占生,傅文华.小区全面提高生活饮用水水质的建议.2002世界水日——中国健康饮用水高层论坛,2002.3
    [9] 周虎城.建筑与居住小区饮用水集中分质供水问题探讨.给水排水,2001,27(12):59~64
    [10] 李延平,蔡祖根.生活饮用水卫生标准使用指南.南京:东南大学出版社,2002.6
    [11] 沙爱燕.优质饮用水工程势在必行.环境保护科学,1999,25.(3):22~24
    [12] 王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2001.12
    [13] 张万友,王德英,郗丽娟等.有机污染饮用水深度处理试验研究.工业水处理1996,16(6):29~31
    [14] 兰淑澄,活性炭水处理技术,北京:中国环境科学出版社,1992
    [15] Wataru孙德智等。环境工程中的高级氧化技术。北京:化工出版社,2002.4
    [16] 孙哲,刘淑彦,田禹等.臭氧化—生物活性炭技术的生产性试验研究.哈尔滨建筑大学学报,1996,29(5):88~91
    [17] 于秀娟,张熙琳,王宝贞等.臭氧—生物活性炭工艺去除水中有机微污染物.
    
    环境污染与防治,2000,22(4):1~3
    [18]邵刚.膜法水处理技术(第2版).北京:冶金工业出版社,2000.1
    [19]高铁.光催化氧化水中有机污染物进展.工业水处理,2000,20(4):10~13
    [20]汪光涛.城市供水行业2000年技术进步发展规划.北京:中国建筑工业出版社,1993
    [21]王宝贞.水污染控制工程.北京:高等教育出版社,1990
    [22]翁军.管道直饮水系统探讨.首届住区水环境国际研讨会,2002.4
    [23]李海波.管道直饮水—住宅饮用水环境的变革.首届住区水环境国际研讨会,2002.4
    [24]冯彦刚.管网分质供水系统分析.首届住区水环境国际研讨会,2002.4
    [25]陈向明,王虹.谈优质饮用水深度处理.全国给水排水技术情报网技术交流会,2000.10
    [26]李国腾,王杭州.轻微污染水源处理技术探讨.2001年中日水处理技术国际交流会,2001.11
    [27]袁志彬,王占生.关于我国城市实施分质供水的讨论.城市建设与发展,2001,第104期:25~28
    [28]王伟川,柯水洲,曹天洪等.长沙市发展管道优质饮用水的可行性分析.湖南城建高等专科学校学报,2000,9(3):5~7
    [29]岳舜琳.我国家用净水器的发展与现状.中国给水排水,1994,(2):26~29
    [30]董秉直,曹达文,刘遂庆等.GAC-UF处理工艺生产优质饮用水的试验研究.净水技术,2001,20(1):14~16
    [31]王琳,王宝贞,杨鲁豫.城市饮用水膜处理技术.膜科学与技术,2001,21(3):53~56
    [32]张晓光,臭氧氧化技术在水处理中的应用.净水技术.1996,58(4):22~25
    [33]吴红伟,刘文君,王占生.臭氧组合工艺去除饮用水源水中有机物的效果.环境科学,2000,21(4):29~33
    [34]徐洪斌,张林生.反渗透与超滤及其在水处理中的应用.电力环境保护,2001,17(3):51~58
    [35]张玉先,张春妍.改善饮用水水质的处理技术及经济分析.给水排水,1998,24
    
    (12):15~19
    [36]夏中明.国外超滤技术的应用及投资分析.武汉水利电力大学学报,1996,29(6):114~116
    [37]汪洪生,陆雍森.国外膜技术进展及其在水处理中的应用.膜科学与技术,1999,19(4):17~22
    [38]龙小庆,王占生.活性炭—纳滤膜工艺去除饮用水中总有机碳和Ames致突变物.环境科学,2001,22(1):75~77
    [39]刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用.给水排水,2001,27(3):12~15
    [40]王琳,王宝贞,聂梅生等.膜与臭氧化生物活性炭组合系统的运行效能.1996,19(6):566~568
    [41]杨永明,王德英,张万友.受污染水源水深度处理的试验研究.东北电力学院学报.1997,17(4):65~70
    [42]肖贤明,刘光汉,潘海祥等.微污染饮用水深度处理组合工艺技术研究——不同组合工艺对一般有害物质去除效果对比.环境科学学报.2000,20(Suppl):69~74
    [43]续曙光,李锁定,刘忠洲.我国膜分离技术研究、生产现状及在水处理中的应用.环境科学进展,1997,5(6):72~76
    [44]张维佳,王宝贞,杜彦武.小型优质饮用水成套设备的研究.哈尔滨建筑大学学报.2001,34(4):65~69
    [45]李灵芝,周蓉,王占生.NF和RO对致突变物和无机离子去除效果比较.环境科学,1997,18(5):65—67
    [46]张维佳.优质饮用水处理单元的分析及成套设备的研究[D].哈尔滨:哈尔滨建筑大学,1999.
    [47]徐荣安.膜技术在饮用水深度处理中的应用,水处理技术1999,10
    [48]吴舜泽,王宝贞,王琳等.饮用水深度净化工艺现场对比试验.给水排水,1999,25(12):3~7
    [49]高隆绪,范潇芳,张美珍.饮用纯净水的制备.水处理技术,1998,24(1):26~29
    [50]孙毅,吕锡武.应用BAC和UV-micro-O3技术对饮用水深度处理的研究.净水技术,2000,18(1):21~24
    
    
    [51]陈济东.优质饮用水及其处理工艺剖析.华东给水排水,2000,42(1):26~33
    [52]尹秋继,崔玉林.“欧陆经典——万兴苑”小区饮用净水工程设计.给水排水,2001,27(4):67~69
    [53]董秉直,曹达文,刘遂庆等.超滤膜活性炭用于优质饮用水生产工艺试验研究.给水排水,2001,27(1):15~18
    [54]王占生.分质供水与《饮用净水水质标准》.给水排水,2000,26(6):74~75
    [55]李忆.上海浦东新区锦华小区管网分质供水系统设计特点,给水排水,1997,23(4):15~17.刘起香.深圳市梅林一村管道直饮水设计体会.中国给水排水,2000,(3)
    [56]吴舜泽.饮用水深度净化工艺现场对比试验.给水排水,1999,25(12):3~7
    [57]李田.分质供水解决城市饮用水水质问题的局限与作用探讨.给水排水,1999,25(2):4~8
    [58]陆荣海.浅议优质饮用水工程的设计.给水排水,1999,25(2):50~51
    [59]杨建林,冯燕.管道直饮水评析.昆明理工大学学报,2000,25(5):56~60
    [60]李灵芝,李建渠,周蓉等.纳滤(NF)膜制取饮用水的研究.水处理技术,1998,24(2):88~91
    [61]李灵芝,张淑琪,王占生.纳滤膜(NF)在饮用水处理中的应用.给水排水,1997,23(5):16~18
    [62]申炳炎,黄新天.饮用净水系统设计简介.给水排水,2000,26(8):48~50
    [63]蒋白懿,许秀红.优质饮水的制备与供应技术.沈阳建筑工程学院学报,1999,15(4):360~364
    [64]Linda, A, etal. Removal of cyanobacterial toxins and cyanobacterial cell from drinking water using domestic water filters. Wat Res, 1998,32(3):633~639
    [65]James, E K,etal. Adsorption of NOM by actived carbon: a size-exclusion chromatogrupy study. Environ Sci Teehnd, 1996,30(4): 1336~1343
    [66]Duguer J P, etal. Influence of NOM on water treatment. Water Supply,1998,16(1):505~509
    [67]Hopman R, etal. The impact of NOM presence on pesticide removal by adsorption: problems and solution. Water Supply, 1998,16(1):497~505
    [68]Robert. D. advances of membranee technique in the treatment of drinking water.
    
    Water Condition and Purification, 1998,40(2) :25-30
    [69] Wammes J, McGovern D. Reverse Osmosis :TDS are mot all bad/Water Condition and Purification. 1998,40(12) :66-70
    [70] Malley J P Jr, Eighmy T T, Collins M R, et al. The performance and Microbiology of ozone-enhance bioogical filtration. Journal AWWA,1993,85:47-57
    [71] Adham S S, Jacangdo J G, Laine J M. Characteristics and cost of MF and UF plants. Journal AWWA, 1996,88:22-31
    [72] Wataru Nishijima, Mitsumasa Okada. Particle separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological actived carbon. Wat Sci. Tech.., 1998,37(1) :117-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700