用户名: 密码: 验证码:
镀锡钢板的钼酸盐钝化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了镀锡钢板的钼酸盐阴极钝化处理工艺,测量了钝化液中钼酸盐钝化液的组成与阴极电流密度等工艺条件对钝化膜耐腐蚀性能的影响,分析了钼酸盐钝化膜的组织结构和耐腐蚀性能,探讨了钼酸盐钝化膜成膜过程及其耐腐蚀机理。
     采用正交实验确定的钼酸盐钝化液的组成为:钼酸盐20 ~ 30 g·L–1,植酸5 ~ 8 g·L–1。通过单因素实验确定的最佳工艺条件是:阴极电流密度0.5 ~ 2.0 mA·cm–2,温度30 ~ 50℃,pH 3.5 ~ 5.0,时间30 ~ 60 s。钝化液稳定性好,使用寿命长。采用3wt%硫酸铜点滴实验研究了钝化处理时间、温度、阴极电流密度、pH等因素对钝化膜耐腐蚀性的影响;并用盐水浸泡实验和干湿交替实验对钼酸盐钝化膜和铬酸盐钝化膜的耐腐蚀性进行了对比测定。在盐水浸泡实验中,未钝化试样在第4天出现黑斑,钼酸盐钝化后,浸泡7天也没有出现黑斑;钼酸盐钝化试样的腐蚀失重是铬酸盐钝化试样的1 ~ 1.5倍,是未钝化试样的75%。这些都说明钼酸盐钝化显著提高了锡镀层的耐蚀性能和抗黑斑的能力。
     采用扫描电子显微镜和能量散射谱对钝化和未钝化锡镀层进行了表面形貌观察和成分分析。
     测量了钝化和未钝化镀锡电极在3.5wt%NaCl溶液中的电位–时间曲线、极化曲线、恒电流充电曲线和电化学阻抗谱。根据腐蚀电化学参数Rp、icorr、Ecorr等分析了钼酸盐钝化膜和铬酸盐钝化膜的耐蚀性能及其作用机理。
     结果表明,钼酸盐钝化膜随着钝化时间增加而不断增厚,但膜层较厚时容易发生开裂。开裂的原因可能是膜层较厚时产生了比较大的内应力。钼酸盐钝化膜同时抑制了锡镀层腐蚀的阳极和阴极过程。
A molybdate non-chromate cathodic treatment for tinplate has been systematically developed in this paper, and the composition and properties of molybdate passivation coating were also studied. The effects of the concentration of molybdate and phytic acid, pH, cathodic current density, treatment time and temperature on the properties of passivation coating have been analyzed. Besides, the mechanisms of molybdate passivation coating formation and enhancing corrosion resistance were also discussed in this paper.
     The optimum composition of the passivation solution was gained by orthogonal test as follows: Na2MoO4 20 ~ 30 g·L–1、phytic acid 5 ~ 8 g·L–1. This passivation solution has good adaptability and 1ong life of service. The best process conditions ware gained by single factor change once time test: cathodic current density 0.5 ~ 2.0 mA·cm–2, pH 3.5 ~ 5.0, treatment temperature 30 ~ 50℃and treatment time 30 ~ 60 seconds. A corrosion-protecting and finely attached thin film is formed on the surface of tinplate by this molybadate non-chromate treatment.
     The effects of the cathodic current density, treatment temperature, pH and treatment time on the properties of passivation coating have been studied using 3wt% CuSO4 spot test. The corrosion resistances of passive film and tin-plating film were studied by dipping in salt solution and periodic wet-dry test. Waste production could not be found on the surface of tin-plating film passivated by Na2MoO4 dipping in salt solution after one week. The weight-loss of Na2MoO4 passive film is one or one and half times the chromate film and 75% of the tin-plating film. So Na2MoO4 passive film improved the corrosion resistance and ability of anti-waste production of tin-plating film.
     The surface appearance of the film and the mechanism of passivate procession were investigated by SEM and EDAX analysis.
     Potential–time curve, polarization curve, galvanostatic charging curve and electrochemical impedance spectroscopy on passive films and tin-plating film were investigated. The electrochemical parameters of electrochemistry were gained by computer fitting. Using the parameters of Rp, icorr, Ecorr, the corrosion resistance and anti-corrosin mechanisms of Na2MoO4 passive film and chromate film was compared and analysised.
     Integrating the results from experiments, passivation coating became thickening with treatment time increasing, the cracking easily occurs when the passivation coating over definite thicken during the passivation coating growth process. It is possible that the incidence of cracking acted as means of stress relief. It can be concluded that Na2MoO4 passive film greatly improved the corrosion resistance and the anti-ability of waste production by inhibit the cathodic and anodic process on the tin-plating film.
引文
[1] Wilcox G D, Gabe D R, Warwick M E. The Development of Passivation Coatings by Cathodic Reduction in Sodium Molybdate Solutions. Corrosion Science, 1988, 28(6): 577-587
    [2] Sampath K. Desirable Features of a Non-Chromate Conversion Coating Process. Plating and Surface Finishing, 2004, 91(3): 38-44
    [3] Duffus J H. Chemical Speciation Terminology: Chromium Chemistry and Cancer. Mineralogical Magazine (Speciation and Toxicity), 2005, 69(5): 557-562
    [4] Hassan M A, Hanaa T, Talaat T, et al. Lead and Chromium Concentrations in the Potable Water of the Eastern Province of Saudi Arabia. Bulletin of Environmental Contamination and Toxicology, 1989, 43(4): 529-533
    [5] Hinton, Bruce R W. Corrosion Prevention and Chromates: the End of an Era? Metal Finishing, 1991, 89(10): 15-20
    [6] Vukasovich M S, Farr J P G. Molybdate in Corrosion Inhibition. Materils Performance, 1986, 25(5): 9-11
    [7] 《化工百科全书》编辑委员会. 化工百科全书. 北京: 化学工业出版社, 1996, 235-237
    [8] 张文钲. 钼酸钠应用前景展望. 中国钼业, 2000, 24(4): 7-9
    [9] 周谟银. 钼酸盐在金属表面处理中的应用. 材料保护, 2000, 33(10): 45-47
    [10] Tang P T, Bech-Nielsen G, Moller P. Molybdate Based Passivation of Zinc. Transactions of the Institute of Metal Finishing, 1997, 75(4): 144-148
    [11] Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions. Part 1: Anodic Treatment of Tin. British Corrosion Journal, 1983, 18(2): 88-92
    [12] Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions. Part 2: Cathodic Treatment of Tin. British Corrosion Journal, 1983, 18(2): 93-97
    [13] Bijimi D, Gabe D R. Passivation Studies Using Group VIA Anions. Part 3: Anodic Treatment of Zinc. British Corrosion Journal, 1983, 18(3): 138-141
    [14] Wilcox G D, Gabe D R. Passivition Studies Using Group VIA Anions. Part 4: Cathodic Redox Reactions and Film Formation. British Corrosion Journal, 1984, 19(4): 196-200
    [15] Wilcox G D, Gabe D R, Warwick M E. Molybdate Passivation Treatments for Tinplate. Transactions of the Institute of Metal Finishing, 1988, 66(3): 89-91
    [16] KePing H, Jingli F. Decorative and Protective Conversion Films on Nickel Plate. Metal Finishing, 1996, 94(6): 97-99
    [17] Shigeki K, Kobe F, Tsutomu O, et al. Both of Japan Method for Anticorrosive Treatment of Galvanized Steel. US Patent. 4385940, 1983-5-31
    [18] Wilcox G D, Wharton J A. Review of Chromate-free Passivation Treatments for Zinc and Zinc Alloys. Transactions of the Institute of Metal Finishing, 1997, 75(6): B140-B142
    [19] Tang P T, Bech-Nielson G. Moller P. Molybdate-Based Alternatives to Chromating as a Passivation Treatment for Zinc. Plating and Surface Finishing, 1994, 81(11): 20-23
    [20] Cowieson D R, Scholefield A R. Passivation of Tin-Zinc Alloy Coated Steel. Transactions of the Institute of Metal Finishing, 1985, 63(2): 56-58
    [21] Wharton J A, Ross D H, Treacy G M, et al. An EXAFS Investigation of Molybdate-Based Conversion Coatings. Journal of Applied Electrochemistry, 2003, 33(7): 553-561
    [22] 张景双, 夏保佳, 屠振密, 等. 锡-锌合金镀层的无铬和低铬钝化. 电镀与精饰, 2002, 24(3): 9-11
    [23] Gould S E Gabe D R. Black Molybdate Conversion Coatings. Surface and Coatings Technology, 1988, 35(10): 79-91
    [24] Kurosawa K, Fukushima T. Effects of pH of a Na2MoO4-H3PO4 Type Aqueous Solution on the Formation of Chemical Conversion Coatings on Steels. Corrosion Science, 1989, 29(9): 1103-1114
    [25] 韩克平, 方景礼. 用 XPS 和 AES 研究锌表面彩色防腐蚀膜. 中国腐蚀与防护学报, 1997, 17(1): 41
    [26] 陈旭俊, 徐越, 马仁川, 等. 乙醇胺钼酸盐的缓蚀作用与机理. 中国腐蚀与防护学报, 1995, 15(4): 279-284
    [27] 龚洁, 徐瑞芬, 陈旭俊, 等. 有机钼酸盐 MDTA 对碳钢的缓蚀作用和机理. 腐蚀与防护, 1999, 20(2): 62-65
    [28] 柳长福, 涂元强, 郭玉华. 镀锡板的无铬钝化. 武钢技术, 2003, 41(5): 47-49
    [29] Ang K, Trugooses F. Development of Phosphate on Mild Steel. Transactions of the Institute of Metal Finishing, 1991, 69(2): 58-62
    [30] Gorecki G. Improved Iron Phosphate Corrosion Resistance by Modification with Metal Ions. Metal Finishing, 1995, 93(3): 36-39
    [31] Shigekuni T, Nakakoij K, Lwasa H. Development of Phosphate Based New Passivation Treatment. in: 8th International Tinplate Conference. Paris,2004-10-25
    [32] Schram T, Goeminne G, Terryn H, et al. Study of the Composition of Zirconium Free Conversion layers on Aluminum Transactions of the Institute of the Metal Finishing, 1995, 73(3): 91-94
    [33] Deck P D, Reichgott D W. Characterization of Chromium-Free No-Rinse Prepaint Coatings on Aluminum and Galvanized Steel. Metal Finishing, 1992, 90(9): 29-35
    [34] Gal-Or L, Silberman I, Chaim R. Electrolytic ZrO2 coatings. Part I: Electrochemical Aspects. Journal of the Electrochemical Society, 1991, 138(7): 1939-1942
    [35] Gray J E, Luan B. Protective Coatings on Magnesium and Its Alloys-a Critical review. Joural of Alloys and Compounds, 2002, 336(1-2): 88-113
    [36] 成信刚, 李宁, 黎德育. 镀锡板无铬钝化的现状与发展前景. 电镀与环保, 2006, 26(3): 5-9
    [37] Yfantis D, Yfantis A, Tzalas B, et al. A New Chrome-Free Passivation Method of Tinplate Used in the Canning Industry. Corrosion, 2000, 56(7): 700-708
    [38] Almeida E, Costa M R, Cristofaro N D, et al. Titanium Passivated Lacquered Tinplate Cans in Contact with Foods. Corrosion Engineering, Science and Technology, 2005, 40(2): 158-164
    [39] 刘飞. 钛盐钝化在锡镀层和黄铜带上的应用. 电镀与环保, 2000, 20(3): 29-31
    [40] Sampath K. Desirable Feathers of Non-Chromate Conversion Coating Process. Plating and Surface Finishing, 2004, 91(3): 38-44
    [41] 张洪生. 无毒植酸在金属防护中的应用. 电镀与涂饰, 1999, 18(4): 38-41
    [42] Breslin C B, Geary M. Influence of Rare-Earth Metal Passivation Treatments on the Dissolution of Tin-Zinc Coatings. Corrosion, 1998, 54(12): 964-971
    [43] Mora N, Cano E, Polo J L. Corrosion Protection Properties of Cerium Layers Formed on Tinplate. Corrosion Science, 2004, 46(3): 563-578
    [44] Bishep C V, Foley T J, Frank J M. Coating Solutions of Trivalent Chromium for Coating Zinc Surfaces. US Patent. 4171231, 1979-10-16
    [45] Wynn P C. Replacing Hexavalent Chromium in Passivation on Zinc Plated Parts. Products Finishing, 2001, 65(5): 55-62
    [46] 蔡加勒, 黄令, 周绍民. 三价铬彩虹色钝化. 中国专利. 1290981A, 2003-01-15
    [47] Paramonov V A, Filatova N G. Passivation of Electrolytical Tin-plate in Trivalent Chromium. Protection of Metals, 2004, 40(3): 271-274
    [48] Wippermann K, Schuitze J W, Kessel R, et al. Inhibition of Zinc Corrosion byBisaminotriazole and Other Triazole Derivatives. Corrosion Science, 1991, 32(2): 205-230
    [49] 王国良. 植酸在腐蚀与防护中应用研究的进展. 武钢技术, 1996, 34(3): 44-46
    [50] Catalá R, Alonso M, Gavara R, et al. Titanium-Passivated Tinplate for Canning Foods. Food Science and Technology International, 2005, 11(3): 223-227
    [51] Daniel Fousse. Surface Treatment of Metal Sheet. US Patent. 5925417, 1999-7-20
    [52] John W, Bibber. Passivating of Tin, Zinc and Steel Surfaces. US Patent. 6830821, 2004-12-14
    [53] 韩克平, 方景礼. 用 XPS 和 AES 研究镀锡层表面月桂胺防变色膜. 中国腐蚀与防护学报, 1996, 16(4): 281-286
    [54] Danqing Z, Wim J, Van O. Corrosion Protection of Metals by Water-based Silane Mixtures of Bis-[trmethoxysilylpropyl]-Amine and Vinyltriacetoxysilane. Progress in Organic Coating, 2004, 49(1): 42-53
    [55] 周和平. 植酸在金属表面处理中的应用. 电镀与环保, 2003, 23(2): 23-25
    [56] Ohga T, Miyazaki H, Yamamoto M. Development of Nonchromate-Treated Tinplate Having Excellent Resistance to Yellow Staining and Smudging. Corrosion Engineering, 1997, 46(12): 771-776
    [57] 重国智文 , 中小路尚匡 , 加藤千昭 . 镀锡钢板 . 中国专利 . CN1386903A, 2002-12-25
    [58] 刘晔红, 刘立炳, 王红洲, 等. 锡镀层表面抗氧化剂及其使用工艺. 中国专利. CN1456706A, 2003-11-19
    [59] 重国智文, 中小路尚匡, 加藤千昭, 等. 表面处理镀锡钢板及化成处理液. 中国专利. CN1416478A, 2003-05-07
    [60] 周渝生. 无铬钝化技术研究的进展. 钢铁, 2003, 38(4): 68-71
    [61] 刘俊哲. 金属的化学处理. 北京: 化学工业出版社, 1988, 15
    [62] 张胜涛. 电镀工程. 北京: 化学工业出版社, 2002, 200
    [63] 日本东洋钢板公司. 镀锡薄钢板. 周其良译. 北京: 冶金工业出版社, 1977, 160-161
    [64] 吴荫顺. 金属腐蚀研究方法. 北京: 冶金工业出版社, 1993, 25-27
    [65] 王成, 江峰, 林海潮. LY12 铝合金三价铈盐溶液中成膜工艺. 中国有色金属学报, 2001, 11(2): 181-184
    [66] 刘粤惠, 刘平安. X 射线衍射分析原理与应用. 北京: 化学工业出版社, 2003, 1-5
    [67] 郑瑞庭. 镀锌低铬钝化溶液的维护与操作. 腐蚀与防护, 2002, 23(3): 135
    [68] 李鸿宾. 镀锌层表面硝酸铈盐钝化研究: [东北大学硕士学位论文]. 沈阳: 东北大学图书馆, 2002, 50-52
    [69] 曹楚南. 腐蚀电化学原理. 第二版. 北京: 化学工业出版社, 2004, 295-296
    [70] 曹楚南, 林海潮. 氯离子对钝态金属电极阻抗谱的影响. 中国腐蚀与防护学报, 1989, 9(4): 261-270
    [71] Biermann M C, Sandenbergh R F, Moltke von T V S. Characteristics and Lacquer Adhesion on Dip and CDC Chromium Passivated Tinplate. Corrosion Science, 2006, 48(10): 2925-2936
    [72] 前田重羲. 关于镀锡板表面铬酸盐膜的组成. 铁と钢, 1978, 64(5): 539-547
    [73] 齐国超, 贡雪南, 孙德恩, 等. 镀锡钢板铬酸盐钝化膜的 X 射线光电子谱分析. 东北大学学报(自然科学版), 2006, 27(8): 875-878
    [74] 柳长福, 郭玉华. 镀锡板表面铬酸盐钝化膜的研究. 钢铁研究, 2000, 28(3): 38-42
    [75] 柳长福, 涂元强, 郭玉华. 铬酸盐钝化膜对低锡量镀锡板性能的影响. 材料保护, 2004, 37(12): 39-42
    [76] 张胜涛. 电镀工程. 北京: 化学工业出版社, 2002, 351-352
    [77] 戴杭杰. 电镀锡薄钢板的镀后处理. 广东有色金属学报, 2003, 13(1): 55-59
    [78] 梁红野, 陈彦泽. 金属表面植酸钝化处理试验研究. 石油化工腐蚀与防护, 2004, 21(6): 5-8
    [79] Wilcox G D, Gabe D R. Passivation Studies Using Group VIA Anions, Part 5: Cathodic Treatment of Zinc. British Corrosion Journal, 1987, 22(4): 254-258
    [80] 何凤姣. 无机化学. 北京: 科学出版社, 2001, 233-234
    [81] 陈锦虹, 卢锦堂, 许乔瑜, 等. 镀锌层钼酸盐钝化的研究进展. 电镀与环保, 2000, 20(1): 21-24
    [82] 刘世宏, 王当憨, 潘承璜. X 射线光电子能谱分析. 北京: 科学出版社, 1988, 1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700