用户名: 密码: 验证码:
熔炼环境对Cu-Cr合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别在氮气、氩气、真空环境下制备了多种成分的Cu-Cr合金。对合金上表面进行了XRD分析,并进行了相应的热力学计算;研究了在非平衡凝固条件下各成分Cu-Cr合金中Cr相的组织形貌;测试了氩气环境下熔炼制备的CuCr1.40合金的力学及电学性能;测试了氩气环境下熔炼制备的CuCr0.89合金、CuCr1.40合金在350℃时的拉伸性能。结果表明:
     1.氮气环境下制备的Cu-Cr合金表面的铬化合物主要是Cr_2N(76at%),还有少量的Cr_2O_3和Cr_7C_3;氩气环境下制备的Cu-Cr合金表面的铬化合物仅有Cr_7C_3(35at%)。氮气环境下制备的合金的表面铬化合物数量明显较氨气环境下的多。
     2.Cu-Cr合金的共晶Cr的形貌主要有球状和杆状两种,随着Cr含量的增加,共晶Cr从主要以球状形式存在转变为主要以杆状形式存在;当Cr含量达到4.20wt%时,共晶Cr几乎完全以杆状形式存在,且有部分Cr杆呈“飘带”状。
     3.氩气环境下制备的CuCr1.40合金在常温下具有良好的综合性能,尤其经锻造+固溶时效处理后,不仅具有很高的抗拉强度(425MPa),还保持了很高的延伸率(32.7%)。
     4.Cu-Cr合金在350℃时的拉伸性能较常温时明显降低:固溶时效CuCr0.89合金、CuCr1.40合金的抗拉强度分别下降了12.6%和22.7%,延伸率分别下降了61.3%和86.2%:锻造+固溶时效CuCr1.40合金的抗拉强度和延伸率分别下降了40%和69.4%。
Cu-Cr alloys with various component were prepared by atmosphere-melting technique in N2, Ar and vacuum conditions respectively. The upper surfaces of alloy were analyzed by XRD , and relevant thermodynamics calculations were carried out; The non-equilibrium microstructure of Cr phase in Cu-Cr alloy with various component were investigated; Mechanical and electrical properties of CuCrl.40 alloy prepared by melting in Ar atmosphere were tested; and tensile property of CuCrO.89 and CuCrl.40 alloy prepared by melting in Ar atmosphere were tested(350癈). The result showed:
    1. The Cr-compound on the surface of Cu-Cr alloy prepared by melting in N2 protected atmosphere was mainly C^N (76at%) , and a spot of CraOj and Cr7C3; the Cr-compound was mainly Cr7C3(35at%) in N2 protected atmosphere. The Cr-compound on the surface of Cu-Cr alloy prepared by melting in ty protected atmosphere was evidently more than in Ar protected atmosphere.
    2. The morphological typing of eutectic Cr of Cu-Cr alloys were sphericity and rod-shaped. With the increase of Cr content, the morphological typing of eutectic Cr were transformed from sphericity to rod-shaped. When the amount of Cr content reached 4.20wt%, eutectic Cr in rod form was primary, and some ribbon of Cr was found.
    3. CuCrl. 40 alloy had excellent combination property at normal temperature, which were prepared by melting in Ar protected atmosphere. After forging process, CuCrl.40 alloy had not only high- tensile strength(425MPa), but also high-
    II
    
    
    
    elongation(32.7%).
    4. The tensile property of high-temperature (350"C) of Cu-Cr alloys, comparing with normal temperature, obviously fell. CuCrO.89 alloy and CuCrl.40 alloy's(after solution treatment and aging) tensile strength had fallen with 12.6% and 22.7% respectively. CuCrl.40 alloy's(after forging process and solution treatment and aging) tensile strength and elongation had fallen with 61.3% and 86.2% respectively.
引文
[1] 马凤仓,倪锋,杨涤心.铜铬合金制备方法研究现状.材料开发与应用,17(3),2002:35—38
    [2] 王强,梁淑华,范志康.CuCr系合金材料制造工艺的新进展.材料导报,14(8),2000:22—24
    [3] 杨红旺.铸造CuCr合金组织与性能的研究[学位论文].西安:西安理工大学,2000
    [4] 许忠胜,王忠钰.CuCr合金电极触头板铸件的熔制.特种铸造及有色合金,(4),1997:43—44
    [5] 王忠钰,许忠胜.用Rece45变质处理CuCr合金铸件的工艺.特种铸造及有色合金,(3),1997:44—45
    [6] 孔庆祥.铜铬合金直接加铬熔炼和铸造.材料开发与应用,12(4),1997:38—40
    [7] 张程煜,王江.CuCr25系列合金的耐电压强度.高压电器,37(4),2001:7—9
    [8] 王江,张程煜.真空感应熔炼法制备CuCr25合金.高压电器,37(2),2001:14—17
    [9] 赵峰,杨志懋.真空熔炼CuCr25合金及其性能研究.高压电器,(3),1999:12—14
    [10] 周武平.铜铬系真空触头材料制造工艺.高压电器,(5),1993:7—17
    [11] 王永兴,邹积岩.CuCr触头材料制造工艺的研究与新发展.高压电器,(3),1996:43—45
    [12] T.W. Ellis, S.T. Kim, and J.D. Verhoeven. Deformation-Processed Copper-Chromium Alloys:Role of Age Hardening, Journal of Materials Engineering and Performance, 4(5),1995:581-586
    [13] 梁淑华,范志康.电弧熔炼法制造CuCr系触头材料的组织与性能.特种铸造及有色合金,(4),2000:25—26
    
    
    [14] V.V. Satya Prasad, V. Ramakrishna Rao, R.D.K. Misra, P. Krishna Rao, and K.M. Gupt. Electroslag crucible melting of age hardening copper-chromium alloy, Materials Science and Technology, 11, 1995:1305-1309
    [15] V.V. Satya Prasad, R.D.K. Misra, V. Ramakrishna Rao, and K.M. Gupt. Hot ductility of an electroslag crucible melted age hardenable Cu-Cr alloy, Materials Science and Technology, 13,1997: 872-874
    [16] P.M. Berge, S.T. Kim, Gibson, J.D. Verhoeven. An Air Melting Technique for Preparing Cu-Cr Alloys. JOM, 50(7),1998:42-43
    [17] 顾建忠.自蔓延高温合成工艺及其应用.特殊钢,15(3),1994:6—12
    [18] 严新炎,孙国雄,张树格,丁玲.材料合成与成型新工艺——SHS铸造技术.机械科学与技术,(3),1994:10—13
    [19] 杨欢,张延安,牛丽萍,魏世丞,毕诗文,赵亚平.自蔓延熔铸法制备CuCr合金的研究.材料导报,15(4),2001:59—60
    [20] 刘平,康布熙,曹兴国等.快速凝固CuCr合金时效析出的共格强化效应.金属学报,35(6),1999:562
    [21] S T Kim, P M Berge, and J D Verhoeven. Deformation-Processed Copper-Chromium Alloys: Optimizing Strength and Conductivity. Journal of Materials Engineering and Performance, 4(5),1995:573-580.
    [22] H Dybiec, Z Rdzawski and M Richert. Flow Stress and Structure of Age-hardened Cu-O. 4wt%Cr Alloy after large Deformation. Materials Science and Engineering, A108,1989:97-104
    [23] H. Fernee, J. Nairn, A. Atrens. Precipitation Hardening of Cu-Fe-Cr Alloys: Part Ⅰ. Mechanical and electrical properties. Journal of Materials Science, 36,2001:2711-2719
    
    
    [24] H. Fernee, J. Nairn, A. Atrens. Precipitation Hardening of Cu-Fe-Cr Alloys: Part Ⅱ. Microstructural charaterisation. Journal of Materials Science, 36,2001:2721-2741
    [25] N. Gao, T. Tiainen, Y. Ji, L. Laakso. Control of Microstructures and Properties of a Phosphorus-Containing Cu-O. 6wt%Cr Alloy through Precipitation Treatment. Journal of Materials Engineering and Performance, 9(6),2000:623-629
    [26] N.Y. Tang, D.M.R. Taplin, G.L. Dunlop. Precipitation and aging in high-Conductivity Cu-Cr Alloys with additions of zirconium and magnesium. Materials Science and Technology, 1,1985:270-274
    [27] 崔忠圻.金属学及热处理.机械工业出版社,(第一版,铸造、焊接专业用)1995:236
    [28] 张化龙.热处理对Cu-Cr合金接头铸件性能的影响.金属热处理,(2),2000:42-43
    [29] 范志康,梁淑华.整体烧结自力型CuW/CuCr弧触头的静态性能.电工合金,(4),1998:25-27
    [30] 范志康,梁淑华,杨红旺.铬含量对铬青铜性能及CuW/CuCr结合面强度的影响.电工合金,(3),1999:22-24
    [31] 陈文革.铬青铜强化工艺的研究.热加工工艺,(1),2001:47-48
    [32] 郑雁军,高强高导电铜合金的研究现状及展望.材料导报,11(6),1997:52-55
    [33] Ken R. Anderson, Joanna R. Groza. Microstructural Size Effects in High-Strength High-Conductivity Cu-Cr-Nb Alloys. Metallurgigal and Materials Transactions A, 32A, 2001: 1211-1224
    [34] 梁淑华,范志康.细晶CuCr系触头材料的研究.粉末冶金技术,
    
    18(3),2000:196-199
    [35] 张国锋,李志民等.机械合金化Cu-5Cr合金的组织性能研究,粉末冶金技术,14(3),1996:175-180
    [36] F. Lopez, J. Reyes, B. Campillo, G. Aguilar-Sahagun, Rapid Solidification of Copper Alloys with High Strength and High Conductivity. Journal of Materials Engineering and Performance, 6(5),1997:611-614
    [37] J.B. Correia, H.A. Davies, C.M. Sellars. The Microstructure and Properties of Water Atomized and Extruded Cu-Cr Alloy Powders. Materials Science and Engineering, A133,1991: 265-269
    [38] 刘平,康布熙,曹兴国等.快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶.中国有色金属学报,9(2),1999:241-246
    [39] 沈军,李振宇,曹福祥等.喷射成形Cu-Cr-Zr-Mg合金的显微组织及性能.中国有色金属学报,9(Supl),1999:136-141
    [40] 李振宇,沈军,曹福祥等.快速凝固铜合金的研究现状.粉末冶金技术,16(1),1998:57-61
    [41] 张瑞丰,沈宁福.快速凝固高强高导铜合金的研究现状及展望.材料科学与工程,18(4),2000:140-144
    [42] J Stobrawa, L Ciura, Z Rdzawski. Rapidly Solidified Strips of Cu-Cr Alloys. Scripta Materialia, 34(11),1996:1759-1763
    [43] Ge Jiping. Modelling of Breakup of Cr Filaments in Wire-drawn Cu-based In situ Composites. Transactions of Nonferrous Metals Society of China, 9(2),1999:223-229
    [44] 彭立明,毛协民,温宏权.自生复合Cu-Cr合金的定向凝固特性.稀有金属材料与工程,29(5),2000:307-310
    [45] 彭立明,温宏权,邹启明等.自生复合Cu-0.8Cr合金定向凝固过程
    
    研究.材料工程,(9),1999:7-9
    [46] 浙江大学普通化学教研组.普通化学,高等教育出版社,1995:462
    [47] [苏联]г.в.萨姆索诺夫.难溶化合物手册.中国工业出版社,1965:86-96
    [48] 马泗春.材料科学基础.陕西科学技术出版社,1998:74-75
    [49] 赵品,谢辅洲,孙文山.材料科学基础.哈尔滨工业大学出版社,1999:77
    [50] 胡汉起.金属凝固原理.机械工业出版社,1991:104
    [51] 崔忠圻.金属学及热处理.机械工业出版社,(第一版,铸造、焊接专业用)1995:160
    [52] 徐祖耀,李鹏兴.材料科学导论.上海科学技术出版社,1986:599
    [53] 崔忠圻.金属学及热处理.机械工业出版社,(第一版,铸造、焊接专业用)1995:329
    [54] 彭立明,毛协民,温宏权.凝固工艺对自生复合Cu-Cr合金电车线综合性能的影响.功能材料,32(2),2001:158-160
    [55] 江全元,何俊佳,邹积岩等.CuCr复合材料的导电性,华中理工大学学报,27(8),1999:78-80
    [56] 方俊鑫,陆栋.固体物理.上海科学技术出版社,1980:200-204
    [57] 刘平,曹兴国,康布熙等.快速凝固Cu-Cr合金导电性分析.洛阳工学院学报,19(4),1998:1—5
    [58] [日本]平修二.金属材料的高温强度(理论·设计).科学出版社,1983:53—54
    [59] P D K Misra, V S Prasad. On the dynamic embrittlement of copper-chromium alloys by sulphur. Journal of Materials Science, 35,2000:3321-3325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700