用户名: 密码: 验证码:
深海洋中脊沉积物砷抗性菌的多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的微生物在砷的生物地球化学循环中起着重要作用。海洋砷的主要来源是岩浆活动,深海热液口活动是砷的一个重要来源。微生物通过累积、甲基化、氧化、还原等作用参与砷价态改变和元素循环,但是目前关于海洋环境的砷抗性菌知之甚少,尤其是深海环境。为了解深海环境中的微生物主要的砷抗性细菌,本论文对印度洋、大西洋中脊深海沉积物砷抗性菌的多样性进行研究。
     本文用含有2 mmol/L NaAsO2的PTA培养基富集来自印度洋和大西洋七个不同站点的深海沉积物样品,得到七个砷抗性菌群。我们对这些菌群的砷抗性菌进行了筛选,同时构建16SrDNA文库与DGGE相结合的方法对其中三个菌群(站点IR-TVG1、IRTVG2、IR-TVG3)的结构进行了解析;分析了不同培养时间和不同砷浓度下IR-TVG2、IR-TVG3站点的抗性菌群结构的变化。
     从七个砷抗性菌群中共分离到102株单菌,分属于28个属50个种,主要为变形菌纲α和γ亚群与Actinobacteria(放线菌门,高G+C革兰氏阳性菌)类群。微杆菌、食烷菌、海杆菌、Idiomarina、盐单胞菌和假交替单胞菌占优势,其中1株菌可能属于新属新种,15株菌可能属于新种。
     通过构建16SrDNA文库与DGGE结合的方法,确定站点IR-TVG1抗性菌群中的优势抗性菌为假交替单胞菌;站点IR-TVG2抗性菌群中的优势抗性菌为食烷菌与微杆菌;站点IR-TVG3抗性菌群中的优势抗性菌为微杆菌。从IR-TVG2、IR-TVG3分离到的微杆菌虽然16S rRNA序列完全一样,但它们的重复PCR指纹图谱和砷抗性能力不一样。
     为了了解取样时间和砷浓度对菌群结构的影响,我们选取IR-TVG2、IR-TVG3站点的抗性菌群做进一步的DGGE分析。结果显示,不同取样时间和不同砷浓度下两站点的抗性菌群结构变化明显。在2mM富集培养条件下,IR-TVG2在培养的初期只有一优势条带,但28h后出现另一条优势条带;但在20mM富集培养条件下没有随时间发生变化。IR-TVG3在两种浓度的富集培养条件下,菌群结构一直没有变化。在0-60mM的砷浓度下,IR-TVG2样品的优势条带随着砷浓度的提高而变少,而IR-TVG3样品,在低浓度砷富集培养条件下仅一条优势条带,但随着砷浓度的提高而出现了第2条优势条带。
     对筛选到的102株单菌进行了砷抗性范围测定,可在10mM NaAsO2存在下正常生长的菌株仅占总菌数的16.6%,这些高抗性的单菌主要筛选自IR-TVG2和IR-TVG3。这可能是这两站点混合菌群比其他菌群抗性高的原因。这些具有高抗性的菌株主要属于Microbacterium属,占52.6%;但实验结果表明,菌株抗性与种属没有必然联系,同属甚至同种的细菌有时表现出差异极大的抗性能力。此外不同的培养基培养条件,相同的菌株也会表现出差异的抗性能力。
     利用兼并引物扩增砷流出泵基因(arsB与ACR3),共获得17个目的大小的基因片段,测序比对结果显示,这些基因与已报道的砷流出泵基因相似度在75%左右。实验结果表明,单菌是否具有砷流出泵与其种属和抗性能力没有必然联系。在获得的优势菌中,均未扩的砷流出泵基因,说明它们存在其他的砷抗性机制。
     对从热液口虾的头部富集分离到的单菌D8-2(Brachybacterium paraconglomeratum,100%)进行初步的研究,结果显示该菌具有良好的砷抗性能力,但不具有砷氧化能力,D8-2对砷具有很好的胞内累积作用,累积量达到2313.7μg As g-1细胞干重,为目前的细菌砷累积量之最高。
     对来自站点IR-TVG1的单菌CK-I1-6(Pseudomonas alcalophila,99.9%)进行初步的研究,扩增得到一750bp大小的基因片段,该基因与Pseudomonas sp. A07的砷流出泵ACR3基因相似性76%。该菌有良好砷抗性,但不具有砷氧化能力,其抗性机制可能与砷流出泵相关。
More evidences suggest that microbes participate in the geochemical circulation of arsenic, and play an important role in the biocirculation. However,little is know about the diversity of arsenite-resistant bacteria in marine environment, especially deep sea. Aims of this study are to isolate such bacteria and detect the diversity of these bacterial species from deep sea sediments.
     Seven deep sea sediment samples were collected from the Indian and Atlantic oceans, with a depth range from 1420m to 4019m. Seven arsenite-resistant bacterial communities were obtained by enrichment in PTA medium with 2 mmol/L NaAsO2 . Arsenite-resistant bacteria were isolated from the communities. Structure of bacterial communities of three samples (IR-TVG1, IR-TVG2, IR-TVG3) was analyzed by 16S rDNA library analyses and DGGE of V3 region of 16S rDNA. In arsenite-resistant bacterial community of IR-TVG2 and IR-TVG3, the dynamic changes in response to different incubation times and increasing arsenite concentration were examined further.
     Total of 102 strains were isolated from the communities, they were tentatively identified to be 50 species of 28 genera. Most of them belong toα-Proteobacteria,γ-Proteobacteria and Actinobacteria. The predominant genera were Microbacterium, Alcanivorax, Marinobacter, Idiomarina, Halomona and Pseudoalteromonas. One isolate possibly belonged to a novel species of novel genus, while fifty isolates possibly belonged to novel species according to the 16S rDNA sequence.
     DGGE and 16S rDNA library analyses results showed that the predominant bacteria in IR-TVG1 community was Pseudoalteromonas, corresponding isolate was AS-I1-3; The predominant bacteria in IR-TVG2 community were Alcanivorax and Microbacterium, corresponding isolates were CK-I2-8 and AS-I2-1; The predominant bacterium in IR-TVG3 community was Microbacterium, corresponding to isolate AS-I3-5. The two isolates, AS-I2-1 and AS-I3-5, had the same 16S rDNA sequence, but varied in BOX-PCR and arsenite tolerance. In addition, community structure of IR-TVG2 and IR-TVG3 changed dynamically in response to incubation periods and arsenite concentration, and varied from each other.
     Among all the 102 isolates, only 16.6% can grow in present of 10 mmol/L NaAsO2, which were mainly isolated from IR-TVG2 and IR-TVG3, and the most key bacteria are Microbacterium, occupying 52.6%.
     With degenerate primers, genes encoding arsenite efflux pump (ars B and ACR3) were PCR detected, showing the expected size of 750bp. Of the 102 isolates, 17 showed successful amplifications with either one or two of the specific primer sets. These fragments showed ~75% similarities to the reported arsenite transporters.
     Strain D8-2(Brachybacterium paraconglomeratum,100%), isolated from a deep sea shrimp, and strain CK-I1-6(Pseudomonas alcalophila,99.9%),isolated from sediment of IR-TVG1, were further studied. Both two showed high resistance but both could not oxidize arsenite to arsenate. D8-2 showed high ability of arsenite absorption, after 48h incubation arsenic accumulation in cells amounted to 2313.7μgAsg-1 (dry weight). A gene of 76% similarity to the arsenite transporter of ACR3 of Pseudomonas sp. A07 was amplified from CK-I1-6.
引文
[1] Cullen W R, Reimer K J. Arsenic speciation in the environment [J]. Chem Rev, 1989, 89(4): 713-764.
    [2] 杨若明。环境中有毒有害化学物质的污染与检测[M]。北京:中央民族大学出版社,2001。
    [3] Mandal B K, Suzuki K T. Arsenic round the world: A review [J]. Talanta, 2002, 58: 201-235.
    [4] 廖自基。环境中微量重金属元素的污染危害与迁移转化[M]。北京:科学出版社,1989。
    [5] Sohrin Y, Matsui M. Arsenic biogeochemistry affected by Eutrophication in Lake Biwa, Japan [J]. Environ Sci Technol, 1997, 31(10): 2712-2720.
    [6] Newman D K, Kennedy E K, Coates J D, et al. A brief review of microbial arsenate respiration [J]. Geomicrobiol, 1998, 15: 255-268.
    [7] Smith A H, Hopenhayn R C, Bates M N. Cancer risks from arsenic in drinking water [J]. Environmental Health Perspectives, 1992, 97: 259-267.
    [8] Bothe J J and Brown P. Arsenic immobilization by calcium arsenate formation [J]. Environ Sci Technol, 1999, 33: 3806-3811.
    [9] 王春旭,李生志,许荣玉。环境中砷的存在形态研究[J]。环境科学,1993,14(4):53-57。
    [10] Meet-jain, Grarde R. Effect of As on chloroPhyll and Protein contents and enzymic activities in greening maize leaves [J]. Water, Air and Soil Pollution, 1997, 93:109-115.
    [11] 杨若明主编。环境中有毒有害化学物质的污染与检测。北京:中央民族大学出版社,2001:99-103。
    [12] 庄金陵。砷对世界地下水源的污染 [J]。矿产与地质,2003,17(2):177-178。
    [13] Alaerts G J, Khouri N B. Chapter 8 Strategies to mitigate arsenic contamination of water supply [R]. Washington, DC, USA:Kabir1 The World Bank, 2001.
    [14] 方兆珩,石伟,韩宝玲,等。高砷溶液中和脱砷过程 [J]。化工冶金,2000, 21(4):359-362。
    [15]曹忠良,王珍云。 无机化学反应方程式手册[M]。长沙:湖南科学技术出版社,1982。
    [16]蒋宏国,潘剑波。三氧化二砷冶炼“三废”治理研究 [J]。湖南有色金属,2002,18(6):39-41。
    [17] 葛宪民,江世强,韦波, 等。广西 3 起有毒化学品重大事故的处治方法和控制体会 [J]。中国职业医学,2003,30(4):55-56。
    [18] 葛宪民,江世强,韦波,等。石灰中和法对砒霜泄漏污染河流的野外现场应急处理 [J]。广西医科大学学报,2004,21(2):1-4。
    [19] 李飞。砷的应用及前景 [J]。有色金属工业,2003,(1):70-71。
    [20] 邱立萍。砷污染危害及其治理技术 [J]。新疆环境保护,1999,(3):15-19。
    [21] MarcelMulder。膜技术基本原理 [M]。北京:清华大学出版社,1999。
    [22] 李菁,李俊,路春娥。膜分离技术在治理含砷废水中的应用研究 [J]。化工时刊,1999,(4):17-19。
    [23] 杨力。砷污染及含砷废水治理 [J]。有色金属加工,1999, (4):27-29。
    [24] Vagliasindi F, Benjamin M. Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors [J]. Water Sci Technol, 1998, 38(6): 337-343.
    [25] Min J H, Hering J G. Arsenate sorption by Fe( Ⅲ) -doped alginate gels [J]. Water Res, 1998, 32(5): 1544-1552.
    [26] Gupta S K, Chen K Y. Arsenic removal by adsorption [J]. Journal WPCF, 1978, (3): 493-506.
    [27] Xu Y H, Ohki A, and Maeda S. Adsorption of arsenic(Ⅴ) by use of aluminium-loaded Shirasu-zeolite [J]. Chemistry Letters, 1998: 1015-1016.
    [28] Xu Y H, Ohki A, and Maeda S. Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded Shirasu-zeolite [J]. Toxicol Environ Chem, 2000, 76: 111-124.
    [29] Xu Y H, Nakajima T, Ohki A. Adsorption and removal of arsenic( Ⅴ) from drinking water by aluminium-loaded Shirasu-zeolite [J]. J Hazard Mater, 2002, B92: 275-287.
    [30] Nakajima T, Xu Y H, Mori Y, et al. Combined use of photocatalyst and adsorbentfor the removal of inorganic arsenic(III) and organoarsenic compounds from aqueous media [J]. J Hazard Mate, 2005, B120: 75-80.
    [31] Xu, Y H, Nakajima T, et al. Leaching of arsenic from coal fly ashes 1. Leaching behavior of arsenic and mechanism study [J]. Toxicol Environ Chem, 2001: 55-68.
    [32] Xu, Y H, Nakajima T, et al. Leaching of arsenic from coal fly ashes 2. Arsenic pre-leaching with sodium gluconate solution [J]. Toxicol Environ Chem, 2001: 69-80.
    [33]Jiang J Q. Removing arsenic from groundwater for the developing-world—a review [J]. Water Sci Technol, 2001, 44(6): 89-98.
    [34] Cheng R C, Wang C C, Beuhler M D. Enhanced coagulation for arsenic removal [J]. J. AWWA, 1994, 86: 79-91.
    [35] Wolfgang D, Reiner S, Martin J. Oxidation of arsenate( Ⅲ) with manganese oxides in water treatment [J]. Water Res, 1995, 29(1): 297-305.
    [36] Myoung-Jin K, Jerome N. Oxidation of arsenite in groundwater using ozone and oxygen [J]. Sci Total Environ, 2000, 247(1): 71-79.
    [37] Ement M T, Khoe G H. Photochemical oxidation by oxygen and iron in acidic solutions [J]. Water Res, 2001, 35(13): 649-656.
    [38] 杨胜科,王文科,张威。砷污染生态效应及水土体系中砷的治理对策研究 [J]。地球科学与环境学报,2004,26(3):70-73。
    [39] Ma L Q, Komart K M, Tu C.一种强富集砷的欧洲蕨 [J]。世界环境, 2001,3:47-48。
    [40] Green H. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths [J]. Rep Dir Vet Res S Afr. 1918, 6: 593-599.
    [41] 朱屯。中温嗜热菌氧化含砷硫金精矿应用近况 [J]。黄金,2001,22(5):27-30。
    [42] Cruz R, Lázaro I, González I , et al. Acid dissolution in bacterial attachment and oxidation of arsenopyrite [J]. Miner Eng, 2005, 18: 1024-1031.
    [43] Osborne F H, Ehrlich H L. Oxidation of arsenite by a soil isolate of alcaligenes [J]. J Appl Bacterial, 1976, 41: 295-305.
    [44] Turpeinen R, Pantsar-Kallio M, Kairesalo T. Role of microbes in controlling thespeciation of arsenic and production of arsines in contaminated soils [J]. Sci Total Environ, 2002, 285:133-145.
    [45] 蒋成爱,吴启堂,陈杖榴。土壤中砷污染研究进展 [J]。土壤,2004,36(3):264-270。
    [46] S.N.格鲁德夫。重金属和砷污染土壤的微生物净化 [J]。国外金属矿选矿,1999:40-42.
    [47] Chang D, FuKushi K, Ghoshs. Stimulation of activated sludge cultures for enchanced heavy metal removal [J]. Water Environ Res, 1995, 67(5): 822-827.
    [48] 廖敏。菌藻共生体去除废水中砷初探 [J]。环境污染与防治,1997,19(2):11-12。
    [49] Lester J N. Significance and behavior of heave metals in wastewater treatment process [J]. Sci Total Environ, 1983, 30: 1-44.
    [50] Kasan H C. The role of waste activated sludge and bacteria in metal-ion removal from solution [J]. Environ Sci Technol (Critical Reviews), 1993, 23(1): 79-117.
    [51] Modak J K, Natarajan K A. Biosorpion of metals using nonliving biomass: A review [J]. Miner Metall Process, 1995, 12: 189-196.
    [52] Gihring T M, Banield J F. Arsenite oxidation and arsenate respiration by a new Thermus isolate [J]. FEMS Microbiol Let, 2001, 204: 335-340.
    [53] Mukhopadhyay R, Rosen B P, Phung L T, et al. Microbial arsenic: from geocycles to genes and enzymes [J]. FEMS Microbiology Rev, 2002, 26: 311-325.
    [54] Gihring T M, Druschel G K, Mccleskey B R, et al. Rapid Arsenite Oxidation by Thermus aquaticus and Thermus thermophilus: Field and Laboratory Investigations Environ [J]. Sci Technol, 2001, 35: 3857-3862.
    [55] Katsoyianni I, Zouboulis A, Altho H, et al. As(III) removal from groundwaters using fixed-bed upflow bioreactors [J]. Chemosphere. 2002, 47: 325-332.
    [56] Oremland R S, Stolz J F. The Ecology of Arsenic [J]. Science, 2003, 300: 939- 944.
    [57] Anderson G, Williams J, Hiller R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containinghydroxylase [J]. J Biol Chem, 1992, 267(33): 23674-23682.
    [58] Leblanc M, Achard B, Personne J-Ch. Arsenic-rich bacterial mats from acidic mine waters (Carnoulès, France) [Z]. In: Pasava, Kribek and Zak eds. Mineral Deposits: from their origin to their environmental impacts, 1995: 127-130.
    [59] Mokashi S A, Paknikar K M. Arsenic( Ⅲ) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater[J]. Lett Appl Microbiol, 2002, 34(4): 258-262.
    [60] Katsoyiannis I A, Zouboulis A I. Application of biological processes for the removal of arsenic from groundwaters [J]. Water Research. 2004, 38: 17-26.
    [61] 洪斌。微生物对砷的地球化学行为的影响 [J]。地球科学进展,2006,21(1):77-82。
    [62] Takamatsu T, Frankenberger Jr W T. Envrionmental biochemistry of Arsenic [R]. In ”Reviews of Environmental Contamination and Toxicology”, New York: Springer-Verlag. 1992, 79-110.
    [63] 王薇,徐炎华。水体中砷污染和治理概况 [J]。微量元素与健康研究(Studies of Trace Elements and Health),2005,22(5):59?61。
    [64] Jonathan R L, Oremland R S. Microbial Transformations of Arsenic in the Environment: From Soda Lakes to Aquifers[J]. Elements, 2006, 2: 85?90.
    [65] Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers [J]. TRENDS Microbiol, 2005, 13(2): 45?49.
    [66] Frankenberger W T, Losi M E. Applications of bioremediation in the cleanup of heavy metals and metalloids [J]. ASA, Madison, 1995.173-210
    [67] Ronald B, Thomas G C. Microbial Methylation of Metalloids:Arsenic, Antimony, and Bismuth[J]. Microbiol Mol Biol Rev, 2002, 66(2): 250-271.
    [68] 訾建威,杨洪英,巩恩普,等。细菌氧化预处理含砷难处理金矿的研究进展[J]。贵金属,2005,26(1):66-70。
    [69] 杨洪英,杨立,魏绪钧,等。耐热耐砷氧化亚铁硫杆菌(SH-T)的驯化和特性研究 [J]。有色金属,2000,52(3):55-57。
    [70] Laverman A M, Blum J S, Schaefer J K, et al. Growth of strain SES-3 with arsenate and other diverse electron acceptors [J]. Appl Environ Microbiol, 1995,61: 3556-3561.
    [71] Macy J M, Santini J M, Pauling B V, et al. Two new arsenate/ sulfate-reducing bacteria: mechanisms of arsenate reduction[J]. Arch Microbiol, 2000, 173: 49.
    [72] Sá-Pereira P, Rodrigues M. Identification of an arsenic resistance mechanism in rhizobial strains. World J Microbiol Biotechnol, 2007, 23(10): 1351-1356.
    [73] Tamaki S, Frankenberger W T. Environmental biochemistry of arsenic[J]. Rev Environ Contam Toxicol, 1992, 124: 79-110.
    [74] Islam S A, Kensuke F and Kazuo Y. Development of an enumeration method for arsenic methylating bacteria from mixed culture samples[J]. Biotechnol Lett, 2005, 27: 1885-1890.
    [75] Jie Q, Barry PR, Yang Z, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S–adenosylmethionine methyltransferase [J]. PNAS, 2006, 103(7): 2075-2080.
    [76] Kogure K, Simidu U and Taga N. A tentative direct microscopic method for counting living marine bacteria [J]. Can J Microbiol, 1979, 25: 415-420.
    [77] Ward D M, Santegoeds C M, Nold S C, et al. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures [J]. Antonie Leeuwenhoek, 1997, 71: 143-150.
    [78] Amann R I, Luding E, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev, 1995, 59: 143-169.
    [79] Humayoun S B, Bano N, Hollibaugh J T. Depth distribution of microbial diversity in Mono lake, a meromictic soda lake in California [J]. Appl Environ Microbiol, 2003, 69:1030-1042
    [80] Oremland R S, Stolz J F, Hollibaugh J T. The microbial arsenic cycle in Mono lake, California [J]. FEMS Microbiol Ecol, 2004, 48: 15-27.
    [81] Oremland R S, Dowdle P R, Hoeft S, et al. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono lake, California [J]. Geochim Cosmochim Ac, 2000, 64(18): 3073-3084.
    [82] Blum J S, Bindi A B, Buzzelli J, et al. Bacillus arsenicoselenatis sp. nov. , andBacillus selenitireducens sp. nov: Two haloalkaliphiles from Mono Lake, California that resp ire oxyanions of selenium and arsenic [J]. Arch Microbiol, 1998, 171(1): 19-30.
    [83] Oremland R S, Hoeft S E, Santini J M, et al. Anaerobic oxidation of arsenite in Mono lake water and by a facultative, arsenite oxidizing chemoautotroph, strain MLHE21 [J]. Appl Environ Microbiol, 2002, 68: 4795-4802.
    [84] DukerA A, Carranza E JM, HaleM. Arsenic geochemistry and health [J]. Environ Int, 2005, 31: 631-641.
    [85] Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296: 2143-2144.
    [86] McArthur J M, Banerjee D M, Hudson-Edwards K A, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The examp le of west Bengal and its worldwide imp lications [J]. Appl Geochem, 2004, 19: 1255-1293.
    [87] Harvey C F, Swartz C H, Badruzzaman A B, et al. Arsenic mobility and ground water extraction in Bangladesh [J]. Science, 2002, 298: 1602-1606.
    [88] Cummings D E, Caccavo Jr F, Fendorf S, et al. Arsenic mobilization by the dissimilatory Fe ( III) reducing bacterium Shewanella alga BrY [J]. Environl Sci Tec, 1999,33: 7232729.
    [89] Islam F S, Gault A G, Boothman C, et al. Role of metal reducing bacteria in arsenic release from Bengal delta sediments [J]. Nature, 2004, 430 (6995): 68-71.
    [90] McCarthy K T, Pichler T, Price R E. Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles [J]. Chemical Geology, 2005, 224: 55-68.
    [91] Reed C. Marine Science: boiling points [J]. Nature, 2006, 439: 905-907.
    [92] Jackson C R, Langner H W, Donahoe-Christiansen J, et al. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring [J]. Environ Microbiol, 2001, 3(8): 532-542.
    [93] Donahoe-Christiansen J, D'Imperio S, Jackson C R, et al. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park [J]. Appl Environ Microbiol, 2004, 70(3): 1865-1868.
    [94] Weeger W, Lievremont D, Perret M, et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment [J]. BioMetals, 1999, 12(2): 141-149.
    [95] Turner A W. Bacterial oxidation of arsenite. I. Description of bacteria isolated from arsenical cattle dipping fluids [J]. Aust J Biol Sci, 1954, 7(4): 452-476.
    [96] Legge J W, Turner A W. Bacterial oxidation of arsenite. III. Cell-free arsenite dehydrogenase [J]. Aust J Biol Sci, 1954, 7(4): 496-503.
    [97] Legge J W. Bacterial oxidation of arsenite. IV. Some properties of bacterial cytochromes[J]. Aust J Biol Sci, 1954, 7(4): 504-514.
    [98] Turner A W. Bacterial oxidation of arsenite [J]. Nature, 1949, 164: 76-77.
    [99] Santini J M, Sly L I, Schnagl R D, et al. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies [J]. Appl Environ Microbiol , 2000, 66(1): 92-97.
    [100] Salmassi T M, Walker J J, Newman D K, et al. Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek [J]. Environ Microbiol, 2006, 8(1): 50-59.
    [101] Iohara K, Iiyama R, Silver S, et al. The mer operon of a mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan [J]. Appl Microbiol Biot, 2004, 56: 736-741.
    [102] Rathgeber C, Yurkova N, Stackebrandt E, et al. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean [J]. Appl Environ Microbiol, 2002, 68(9): 4613-4622.
    [103] Humphries A C, Nott K P, Hall L D, Macaskie L E. Reduction of Cr(VI) byimmobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. [J]. Biotechnol Bioeng ,2005, 90(5): 589-596.
    [104] Nedelkova M, Merroun M L, Rossberg A, et al. Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium [J]. FEMS Microbiol Ecol, 2007, 59(3), 694-705.
    [105] Inomata T, Eguchi H, Matsumoto K, et al. Adsorption of microorganisms onto an artificial siderophore-modified Au substrate [J]. Biosens Bioelectron, 2007, 23(5): 751-755.
    [106] Macur R E, Jackson C R, Botero L M, et al. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil [J]. Environ Sci Technol,2004, 38(1),:104-111.
    [107] Mokashi S A, Paknikar K M. Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater [J]. Lett Appl Microbiol, 2002, 34(4), 258-62.
    [108] He Z, Xiao S, Xie X, et al. Microbial diversity in acid mineral bioleaching systems of Dongxiang copper mine and Yinshan lead-zinc mine [J]. Extremophiles, 2008, 12(2): 225-234.
    [109] Bruneel O, Duran R, Casiot C, et al. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France [J]. Appl Environ Microbiol, 2006, 72(1): 551-556.
    [110] Macur RE, Jackson CR, Botero LM, et al. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil [J]. Environ Sci Technol, 2004, 38(1): 104-111.
    [111] Lorenza N, Hintemannb T, Kramarewac T, et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure [J]. Soil Biol and Biochem, 2006, 38(6): 1430-1437.
    [112] Hollibaugh J T, Budinoff C, Hollibaugh R A, et al. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake [J]. Appl Environ Microbiol, 2006, 72(3): 2043-2049.
    [113] Salmassi T M, Walker J J, Newman D K, et al. Community and cultivationanalysis of arsenite oxidizing biofilms at Hot Creek [J]. Environ Microbiol, 2006, 8(1): 50–59.
    [114] Amend J P, Akerman N H, Meyer-Dombard D R, et al. Microbial communities and geochemical energy in an arsenic-rich marine hydrothermal system [J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A14.
    [115] Achour A R, Bauda P, Billard P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria [J]. Res Microbiol, 2007, 158(2): 128-137.
    [116] Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic Arsenic [J]. Appl Environ Microbiol, 2005, 71(2): 599-608.
    [117] Inskeep W P, Macur R E, Hamamura N, et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes [J]. Environ Micobiol, 2007, 9(4): 934-943.
    [118] Silver S, Budd K, Leahy K M, et al. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus [J]. J Bacteriol, 1981, 146 (3): 983-996.
    [119] Sauge-Merle S, Cuine S, Carrier P, et al. Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin Synthase [J]. Appl Environ Microbiol, 2003, 69 (1): 490-494.
    [120] Kostal J, Yang R, Wu C H, et al. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR [J]. Appl Environ. Microbiol, 2004, 70 (8): 4582-4587.
    [121] Takeuchi M, Kawahata H, Gupta LP, et al. Arsenic resistance and removal by marine and non-marine bacteria [J]. J Biotechnol, 2007, 127(3): 434-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700