用户名: 密码: 验证码:
氟化亚铈纳米晶和碳管包覆氟化亚铈纳米线复合结构的制备及其高压结构相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CeF_3作为一种典型稀土氟化物材料,因其优异的光学性质及在光电子纳米器件上的应用而备受关注。目前对于CeF_3纳米材料的合成,物性研究还只是处于起步阶段,尤其是制备具有更加规则形貌的CeF_3纳米片,仍是一项具有挑战性的课题。碳管包覆复合纳米线中,纳米线因其外部碳管的量子限域效应而表现出不同于其体材料甚至普通形态纳米材料的特殊性质,成为了近期的研究热点。高压是深入认识材料结构和性质的有效途径,为了探求高密度CeF_3结构,人们已经开展关于CeF_3高压结构相变理论模拟与实验,但是CeF_3纳米材料的高压相变研究仍属空白。本论文主要围绕于CeF_3纳米片及碳管包覆CeF_3纳米线的实验制备研究,并对CeF_3纳米片进行了在位高压相变研究。
     利用水热合成与超声震荡辅助处理的实验方法首次得到了具有规则六角形貌的六角(P63/mcm)结构CeF_3单晶纳米片。系统研究了反应物之间相对摩尔比例对产物的影响,得到最佳实验条件。分析了各反应物在制备过程中所起到的作用。利用XRD、TEM、SEM对反应产物进行了表征。
     利用金刚石对顶砧高压技术及同步辐射分析技术,首次研究了高压下CeF_3纳米片结构相变过程。发现CeF_3纳米片的相变压力明显低于体材料,且其相变过程具有明显的阶段性。相变历经cubic亚稳相,这可能是CeF_3纳米片相变压力的降低的的主要原因。CeF_3纳米片相变过程所呈现的阶段性与CeF_3纳米片的准二维结构相关,是由高压下二维纳米片状材料中各向异性的压力效应所导致的。
     对于电弧法制备碳纳米管包覆CeF_3纳米线(CeF_3NWs@CNT)实验条件进行了探索。系统的研究了气氛压力对实验结果的影响,发现当气氛压力达到8.2x104Pa时产物的中CeF_3NWs@CNT含量达到最大。对于提高实验产物的纯度提出了相应建议。初步讨论了实验的基本原理。
Lanthanide fluoride crystals have become the focus of recent investigations for their outstanding luminescent characteristics and potential applications in optical devices. As typical lanthanide fluorides crystal, Cerium fluoride (CeF_3) has been considered as one of the most promising scintillators of the next generation because of its high density, fast response and high-radiation resistance. Stimulated by both the promising applications and the interesting properties, great efforts have been devoted to the synthesis of CeF_3 nanostructures. For CeF_3 nanoplate previously, all the reports show that the obtained nanoplates were only round shaped with hexagonal (P63/mcm) structure synthesized via various methods. So it is still a challenge to prepare high crystallinity CeF_3 nanoplates with other regular shapes.
     High pressure technique provides us a very powerful tool to study the relations between the structure and physical properties and many new structures have been found under high pressure. High density is one of the most important parameters of conventional scintillator. With expectation to find higher density phase, several investigations have been focused on the high pressure phase transitions of bulk lanthanide fluorides crystals. However, there is no direct structural study on CeF_3 nanoplates, especially determinative X-ray diffraction data under high pressure. So it is important to study the phase transition and compressibility of CeF_3 nanoplates and the size effect on the phase transition process under higher pressure.
     The single crystalline CeF_3 nanoplates with regular hexagonal shape have been successfully synthesized by a ultrasound vibration assisted hydrothermal process for the first time. In the experiment , we chose to treat the mixing solution of CeCl3 and trisodium citrate with ultrasound irradiation(40 KHz). The mixing solution of CeCl3 , trisodium citrate and NaF was transferred into a Teflon bottle held in a stainless steel autoclave, sealed, and maintained at 180°C for 24 h. After centrifugation, washing with deionized water, and then dried in air we got final product. We set the molar ratio of the CeCl3, trisodium citrate and NaF at 1:2:6.25(0.4mmol, 0.4mmol, 2.5mmol). The phase structure of the as-prepared sample were investigated by XRD. All of the diffraction peaks can be identified to a pure hexagonal phase [space group : P63/mcm (193)] . From the ED patterns, the CeF_3 nanoplates is shown to be single crystal with high crystalline quality. SEM and TEM observations show that product is congeries of hexagonal CeF_3 nanoplates with an average diameter of 110 nm and thickness of 17 nm which is obviously different from the round nanoplates reported in study of Li et al. These results show that the ultrasound vibration assisted hydrothermal method is possible tool to synthesize nanomaterials with regular shapes and controllable size.
     The ADXD measurements were carried out at 4W2 High-Pressure Station of Beijing Synchrotron Radiation Facility (BSRF). High-pressure was generated by diamond anvil cell (DAC). CeF_3 powders were mounted in a 140-μm-diameter hole of the T301 stainless-steel gasket with thickness of 70μm. 4:1 methanol-ethanol mixture was chosen as the pressure-transmitting medium. The pressure was calibrated by the pressure dependent shift of the R1 ruby fluorescence line. The geometry correction for the radial integration of the two-dimensional data and the transformation into standard one-dimensional powder patterns were performed using Fit2d. The ADXD patterns of CeF_3 nanoplates showed that when the pressure increasing to 6.8 GPa two new peaks appeared which can be identified as (040), (222) peaks of orthorhombic (Cmma) structure. At 19.3 GPa another prominent change is that (021) ,(201), (220) and (002) peaks of orthorhombic structure appeared and the disappearance of (112) peak of hexagonal (P63/mcm) structure was observed. As the pressure reached 24GPa, all of diffraction peaks of the initial phase had disappeared which means that the CeF_3 nanoplates of hexagonal (P63/mcm) structure would completely transformed to the orthorhombic (Cmma) structure. During the transformation of lanthanide fluorides from hexagonal structure to orthorhombic structure, it have been guess that the structure of the high pressure phase is adistorted variant of the structure of a hypothetical cubic phase which is metastable under normal conditions and (040), (400), (222) peaks of orthorhombic structure is distorted from (220) peak of cubic phase. So we proposed a preferential phase transformation from (220) plane in the cubic structure to (040), (400), (222) plane of orthorhombic structure with compressing the (001) plane of initial hexagonal structure up to 6.8 GPa and the phase transition detailes accorded with conditions of phase transition pressure reduction with size decreasing in nanomaterials mentioned by Wang very well. In summary, the two parts of hexagonal-orthorhombic phase transition process should be attribute to size effect and anisotropy pressure-induced behaviors of 2D CeF_3 naoplates with high aspect ratio.
     The synthesis of CeF_3NWs@CNT was conducted in an arc discharge reactor in helium. A high-purity graphite tube filled with a mixture of polyetherimide (PEI) and CeF_3 powders in a weight ratio of 3:7 was used as the consuming anode while the cathode was a high-purity graphite rod. The arc discharge was conducted with a direct current of 70-90 A and voltage of 20-30 V. We found that when the He pressure was lower than 2.8x104Pa most of the product was carbon nanotubes and with He pressure increasing nanoparticles appeared in the product and there was no CeF_3NWs@CNT could be observed. As the He pressure up to 4.2x104Pa, CeF_3NWs@CNT came into observation and the content increase with the He pressure increasing. At 8.2x104Pa the content of CeF_3NWs@CNT obviously increased but the CNTs and amorphous carbon still exist in the product. In the experiment process, we found that the CNTs and amorphous carbon were mainly produce by graphite anode. So if we can find a polymer with good conductivity and high melting temperature as the anode, the outgrowth will decrease and the CeF_3NWs@CNT could be separated easily. The exploration of experimental conditions provides important detailed experiment data for synthesis of CeF_3NWs@CNT which is a great support for the primary exploration of the growth mechanism.
引文
[1] HALPERIN W P, Quantum size effects in metal particles[J]. Rev. Mod. Phys., 1986, 58:533.
    [2]曹茂盛,关长斌等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社
    [3] BALL P, GARWIN L. Science at the atomic scale[J]. Nature, 1992, 355:761
    [4]张立德,牟季美.开拓原子和物质的中间领域-纳米粒子和纳米固体[J].物理, 1992, 21(3): 167-173,
    [5] LU J, TINKHAN M.单电子晶体管[J].物理, 1998, 27(3):137-140
    [6] FELDHEIN D L, KEATING C D. Self-assembly of single electrontransistors and related devices. Chem. Soc. Rev., 1998, 27, 1
    [7]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社2001.
    [8]裴枉,任国浩. LnX3型稀土卤化物闪烁晶体的闪烁性能[J].人工晶体学报,2004, 33, 6: 1004
    [9] DANTELLE G, MORTIER M, VIVIEN D, PATRIARCHE G. Effect of CeF3 Addition on the Nucleation and Up-Conversion Luminescence in Transparent Oxyfluoride Glass-Ceramics[J]. Chem. Mater. 2005, 17:2216-2222
    [10]殷亚东,张志成,徐项凌.纳米材料的辐射合成法[J].化学通报, 1998, (12):21
    [11] QIU S Q, DONG J X, CHEN G X. Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear, 1999, 230, 1:35-38
    [12]张志琨.纳米科技与纳米技术[M],北京:国防工业出版社,2000
    [13] YOSHIZAWA et al. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. J. Appl. Phys., 1988, 10:6044
    [14]郭景坤,冯楚德.纳米陶瓷的最新进展[J].材料研究学报,1995,9(5): 412
    [15]田明原.纳米陶瓷与纳米陶瓷粉末[J],无机材料学报, 1998, 13(2): 130
    [16]瞿秀静,张楠.纳米金属材料的研究方向[J].材料导报, 1993, 13(6):22
    [17]卢柯,卢磊.金属纳米材料力学性能的研究发展[J].金属学报,2000, 36(8):785
    [18]肖林久,孙彦彬,邱关明等.纳米稀土发光材料的研究进展[j].稀土, 2002,23(4):46
    [19]张太中,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社2005
    [20]李强,高濂.稀土纳米材料的荧光特性[J]. 96中国材料研讨会, 1996, 134
    [21] WANG Z L, QUAN Z W, JIA P Y, LIN C K, LUO Y, CHEN Y, FANG J. Facile synthesis and photoluminescent properties of redispersible CeF3, CeF3 : Tb3+, and CeF3 : Tb3+/LaF3 (core/shell) nanoparticles[J]. Chem. Mater., 2006, 18:2030-2037.
    [22] ZHANG H, LI H F, LI D Q, MENG S L J. Synthesis and characterizationof ultrafine CeF3 nanoparticles modified by catanionic surfactant via a reverse micelles route[J]. Colloid Interface Sci., 2006, 302:509-515.
    [23] LIAN H, ZHANG M, LIU J, YE Z, YAN J, SHI C. Synthesis and spectral properties of lutetium-doped CeF3 nanoparticles[J]. Chem. Phys. Lett., 2004, 395:362-365.
    [24] WANG Z Y, ZHAO Z B, QIU J S. Carbon nanotube templated synthesis of CeF3 nanowires[J]. Chem. Mater., 2007, 19,: 3364 -3366.
    [25] ZHU L, LI Q, LIU, X D, LI J Y, ZHANG Y F, MENG J, CAO X Q. Morphological control and luminescent properties of CeF3 nanocrystals[J]. J. Phys. Chem. C, 2007, 111:5898-5903.
    [26] LI C X, LIU X M, YANG P P, ZHANG C M, LIAN H Z, LIN J. LaF3, CeF3, CeF3 : Tb3+, and CeF3: Tb3+@LaF3 (core-shell) nanoplates: Hydrothermal synthesis and luminescence properties[J]. J. Phys. Chem. C, 2008, 112:2904-2910
    [27] WU Q, CHEN Y, XIAO P, ZHANG F, WANG X Z, HU Z. Hydrothermal synthesis of cerium fluoride hollow nanostructures in a controlled growth microenvironment[J]. J. Phys. Chem. C, 2008, 112: 9604 -9609
    [28] MOSES W W, DERENZO S E. The scintillation properties of cerium -doped lanthanumfluoride[J]. Nucl. Instrum. Methods A, 1990, 299: 51.
    [29] AUFFRAY E, BACCARO S, BECKERS T, BENHAMMOU. Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators[J]. Nucl. Instrum. Methods A, 1996, 383:367.
    [30] SHIMAMURA K, VI′LLORA E G, NAKAKITA S, NIKL M, ICHINOSE N.Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals[J]. J. Cryst. Growth, 2004, 264, 208.
    [31] DYUZHEVA T I, LITYAGINA L M, DEMISHEV G B, BENDELIANI N A. Phase transition and compressibility of LaF3 under pressures up to 40 GPa[J]. J. Alloys Compd., 2002, 335:59-61.
    [32] DYUZHEVA T I, LITYAGINA L M, DEMISHEV G B, BENDELIANI N A. High-pressure phase transitions of LaF3 and CeF3[J]. Inorganic Materials., 2003, 39: 1198–1202.
    [33] MAO H K, JEPHCOAT A P, HEMLEY R J, FINGER L W, ZHA C S, HAZEN R M, COX D E, Synchrotron X-ray Diffraction Measurements of Single-Crystal Hydrogen to 26.5 Gigapascals[J]. Science, 1988, 239, 1131.
    [34] CHOU I M, BLANK J G, GONCHAROV A F, MAO H K, HEMLEY R J, In Situ Observations of a High-Pressure Phase of H2O Ice[J]. Science, 1998, 281, 809.
    [35] SHEN A H, BASSETT W A, CHOU I M, SYONO Y, MANGHNANI M H, eds. Tokyo/Washington : Terra Scientific Publishing Company (TERRA PUB) / American Geophysical Union [Z], 1992, 61.
    [36] PIERMARINI G J, BLOCK S, Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale[J]. Rev. Sci. Instru, 1975, 46, 973.
    [37] FORMAN R A, PIERMARINI G J, BARNETT J D, BLOCK S, Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence[J]. Science, 1972, 176, 284.
    [38] PIERMARINI G J , BLOCK S, BARNETT J D, FORMAN R A, Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar[J]. J. Appl. Phys., 1975, 46, 2774.
    [39] JIANG J Z, OLSEN J S, GERWARD L, FROST D, RUBIE D, PEYRONNEAU J, Structural stability in nanocrystalline ZnO[J]. Europhys. Lett., 2000, 50, 48
    [40] JIANG J Z, OLSEN J S, GERWARD L , MORUP S. Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals[J]. Europhys. Lett.1998, 44, 620
    [41] QADRI S B, YANG J, RATNA B R, SKELTON E F, HU J Z. Pressure induced structural transitions in nanometer size particles of PbS[J]. Appl. Phys. Lett., 1996,69, 2205
    [42] OLSEN J S, GERWARD L, JIANG J Z. On the rutile/alpha -PbO2-type phase boundary of TiO2[J]. J. Phys. Chem. Solids, 1999, 60, 229
    [43] TOLBERT S H, ALIVISATOS A P. Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals[J]. Science. 1994, 265, 373
    [44] WANG Z, SAXENA S K, PISCHEDDA V, LIERMANN H P, ZHA C S. X-ray diffraction study on pressure-induced phase transformations in nanocrystalline anatase/rutile (TiO2) [J]. J. Phys.: Condens. Matter, 2001, 13, 8317
    [45] WANG Z, SAXENA S K, PISCHEDDA V, LIERMANN H P, ZHA C S. In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2[J]. Phys. Rev. B, 2001, 64, 012102
    [46] WANG Y J, ZHANG J Z, WU J, COFFER J L, LIN Z J, SINOGEIKIN S V, YANG W G, ZHAO Y S. Phase transition and compressibility in silicon nanowires[J]. NANO LETTERS, 2008, 8 ,9: 2891-2895
    [47] AJAYAN P M, IIJIMA S. Capillarity induced filling of carbon nanotubes[J]. Nature, 1993 , 361 : 333-335
    [48] HARRIS P J F. Carbon Nanotubes and Related Structures[M]. Cambridge, UK: Cambridge University Press, 1999
    [49] Pederson M R, Broughton J Q. Vibrational signatures for low-energy Intermediate-sized Si clusters[J]. Phys. Rev. Lett., 1992, 69 :2689-2692
    [50] GUERRET-PLéCOURT C , LE B Y, LOISEAU A, et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes [J]. Nature, 1994, 372: 761-765.
    [51] RUOFF R S, LORENTS D C, CHAN B C, et al. Single-crystal Metals encapsulated in carbon nanoparticles [J]. Science, 1993, 259:346-348.
    [52] SERAPHIN S, ZHOU D, JIAO J, et al. Yttrium carbide in nanotubes [J]. Nature,1993, 362: 503-503
    [53] SERAPHIN S, ZHOU D, JIAO J, et al. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters [J]. Appl. Phys.Lett., 1993, 63: 2073-2075.
    [54] LOISEAU A, PASCARD H. Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method [J]. Chem.Phys. Lett, 1996, 256: 246-252.
    [55] DAI J Y, LAUERHAAS J M, SETLUR A A, et al. Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors [J]. Chem. Phys. Lett., 1996, 258: 547-553.
    [56] AJAYAN P M, EBBESEN T W, ICHIHASHI T, et al. Opening carbon nanotubes with oxygen and implications for filling [J]. Nature, 1993, 362: 522-525.
    [57] HARRIS P J F, TANG S C. Chem. Phys. Lett . , 1998 , 293 : 53-58
    [58] DUJARDIN E, EBBESEN T W, HIURA H. Capillarity and wetting of carbon nanotubes [J]. Science, 1994, 265: 1850-1852.
    [59] AJAYAN P M, STEPHAN O, REDLICH P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J]. Nature, 1995, 375: 564-567.
    [60] UGARTE D, CHATELAIN A, DEHEER W A. Nanocapillarity and chemistry in carbon nanotubes [J]. Science, 1996, 274: 1897-1899.
    [61] TSANG S C, CHEN Y K, HARRIS P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-162.
    [62] LAGO R M, TSANG S C, LU K L, et al. Filling Carbon Nanotubes with Small Palladium Metal Crystallites-the Effect of Surface Acid Groups [J]. Chem. Commun., 1995,13: 1355-1356.
    [63] TSANG S C, DAVIS J J, GREEN M L H, et al. Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity [J]. Chem. Commun., 1995, 1803-1804.
    [64] MAYNE M, GROBERT N, TERRONES M, et al. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-basedaerosols [J]. Chem. Phys. Lett., 2001, 338: 101-07.
    [65] GROBERT N, TERRONES M, OSBORNE A J, et al. Thermolysis of C60 thin film yields Ni-filled tapered nanotubes [J]. Appl. Phys. Lett., 1998, 67(A): 595-598.
    [66] TERRONES M, GROBERT N, ZHANG J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films [J]. Chem. Phys. Lett., 1998, 285: 299-305.
    [67]CHANCOLON J, ARCHAIMBAULT F, PINEAU A, et al. Carbon’2003.Oviedo , Spain , 2003
    [68] LIANG C H, MENG G W, ZHANG L D, et al. Large-scale synthesis of beta-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles [J]. Cryst. Growth, 2000, 218: 136-139.
    [69] CHEN Y K, CHU A, COOK J, et al. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies [J]. Mater. Chem., 1997, 3: 545-549.
    [70] CHU A, COOK J, HEESOM R J R, et al. Filling of carbon nanotubes with silver, gold, and gold chloride [J]. Chem. Mater., 1996, 8: 2751-2754.
    [71] AJAYAN P M, COLLIEX C, LAMBERT J M, et al. Growth of Manganese Filled Carbon Nanofibers in the Vapor Phase [J]. Phys. Rev. Lett., 1994, 72: 1722-1725.
    [72] SUBRAMONEY S, RUOFF R S, LORENTS D C, et al. Magnetic separation of gdc2 encapsulated in carbon nanoparticles [J]. Carbon, 1994, 32: 507-513.
    [73] SLOAN J, HAMMER J, ZWIEFKA-SIBLEY M, et al. The opening and filling of single walled carbon nanotubes (SWTs) [J]. Chem. Commun., 1998, 347-348.
    [74] SLOAN J, WRIGHT D M, WOO H G, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes [J]. Chem. Commun., 1999, 699-700.
    [75] MEYER R R, SLOAN J, DUNIN-BORKOWSKI R E, et al. Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled CarbonNanotubes [J]. Science, 2000, 289: 1324-1326.
    [76] SLOAN J, NOVOTNY M C, BAILEY S R, et al. Two layer 4︰4 coordinated KI crystals grown within single walled carbon nanotubes [J]. Chem. Phys. Lett., 2000, 329: 61-65.
    [77] SLOAN J, KIRKLAND A I, HUTCHISON J L. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes [J]. Chem. Commun., 2002, 13: 1319-1332.
    [78] BROWN G, BAILEY S, SLOAN J, et al. Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes [J]. Chem. Commun., 2001: 845-846.
    [79] XU C, SLOAN J, BROWN G, et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes [J]. Chem. Commun., 2000: 2427-2428.
    [80] MITTAL J, MONTHIOUX M, ALLOUCHE H, et al. Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air [J]. Chem. Phys. Lett., 2001, 339: 311-318.
    [81] FRIEDRICHS S, MEYER R R, SLOAN J, et al. Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite [J]. Chem. Commun., 2001: 929-930.
    [82] FRIEDRICHS S, SLOAN J, HUTCHISON J L, et al. Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite [J]. Phys. Rev. B, 2001, 64(4): 045406.
    [83] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes [J]. Nature, 1998, 396: 323-324.
    [84] BURTEAUX B, Claye A, Smith B W, et al. Abundance of encapsulaetd C (60) in peapods [J]. Chem. Phys. Lett., 1999, 310: 21-24.
    [85] SMITH B W, MONTHIOUX M, LUZZI D E. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials [J]. Chem. Phys. Lett., 1999, 315: 31-36.
    [86] MONTHIOUX M, SMITH B W, BURTEAUX B, et al. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation [J]. Carbon, 2001, 39: 1251-1272.
    [87] HIRAHARA K, SUENAGA K, BANDOW S, et al. One- dimensional metallofullerene crystal generated inside single-walled carbon nanotubes [J]. Phys. Rev. Lett., 2000, 85(25): 5384-5387.
    [88] SUENAGA K, TENCE M, MORY C, et al. Element-selective single atom imaging [J]. Science, 2000, 290: 2280-2282.
    [89] SMITH B W, LUZZI D E, ACHIBA Y. Tumbling atoms and evidence for charge transfer in La2@C80@SWNT [J]. Chem. Phys. Lett., 2000, 331: 137-142.
    [90] ROUTKEVITCH D, BIGIONI T, MOSKOVITS M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates [J]. J. Phys. Chem., 1996, 100: 14037-14047.
    [91] MATUI K, PRADHAN B K, KYOTANI T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. J. Phys. Chem., 2001, 105: 5682-5688.
    [92] MATUI K, KYOTANI T, TOMITA A. Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film [J]. Adv. Mater., 2002, 14 (17): 1216-1219.
    [93] FERRE R, OUNADJELA K, GEORGE J M, et al. Magnetization processes in nickel and cobalt electrodeposited nanowires [J]. Phys. Rev. B, 1997, 56: 14066-14075.
    [94] KYOTANI T, TSAI L F, TOMITA A. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film [J]. Chem. Mater., 1996, 8: 2109-2113.
    [95] HSU W K, HARE J. P, Terrones M, et al. Condensed-phase nanotubes[J]. Nature, 1995, 377: 687-687
    [96] HSU W K, TERRONES M, TERRONES H, et al. Electrochemical formation of novel nanowires and their dynamic effects [J]. Chem. Phys. Lett., 1998, 284: 177-183.
    [97] HSU W K, LI J, TERRONES H, et al. Electrochemical production of low-melting metal nanowires [J]. Chem. Phys. Lett., 1999, 301: 159-166.
    [98] FAN S S, CHAPLINE M G, FRANKLIN N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283: 512-514.
    [99] PAN Z W, XIE S S, CHANG B H, et al. Very long carbon nanotubes [J]. Nature, 1998, 394: 631-632.
    [100] WHITNEY T M, JIANG J S, SEARSON P C, et al. Fabrication and magnetic properties of arrays of metallic nanowires [J]. Science, 1993, 261: 1316-1319.
    [101] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700