用户名: 密码: 验证码:
经冠状动脉自体骨髓基质干细胞移植与心肌再生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死(myocardial infarction,MI)是影响人类生活质量的一类重要疾病。近年来,随着人们生活水平的提高,其发病率明显升高。急性心肌梗死后,由于局部心肌组织缺血、缺氧,心肌细胞大量坏死,纤维组织增生,疤痕组织形成,心室重塑(ventricular remodeling,VR),心功能下降,晚期常出现难治性心力衰竭(refractory heart failure)。目前的治疗主要针对挽救濒死心肌细胞,增强存活心肌细胞的功能;阻断神经内分泌系统,阻断心室重塑。由于心肌细胞不能再生,心肌疤痕组织不能修复为新的心肌组织,但通过细胞移植可以增加梗死区心肌细胞数量,从而为心肌梗死的治疗提供新的策略。近十年来,国内外学者做了大量细胞心肌成形术(cellular cardiomyoplasty,CCM)方面的工作,胚胎干细胞(embryonic stem cells)、胚胎心肌细胞(fetal cardiomyocytes)、骨骼肌成肌细胞(skeletal myoblasts)及自体心肌细胞(autologous cardiomyocytes)的心肌内移植研究取得了很大进展。由于供体细胞来源、异体细胞移植引起的免疫排斥反应及移植细胞与宿主心肌细胞的连接等问题,目前还不能确定进行细胞移植的最佳细胞类型。骨髓基质干细胞(bone marrow stromal stem cells,MSSCs)为一种多能干细胞,国外学者发现骨髓基质干细胞经体外诱导后可分化为肌源性细胞(myogenic cells)或心肌细胞。本研究观察骨髓基质干细胞的体外培养、诱导分化及扩增,观察体外诱导的自体骨髓基质干细胞经冠状动脉选择性植入心脏后的生长、分化及对心脏功能的影响,为自体骨髓基质干细胞移植进行心肌再生的临床应用提供实验依据。
    方法:1.采用贴壁法分离骨髓基质干细胞;5-氮胞苷(5-azacytidine,5-aza)诱导骨髓基质干细胞,促进其向肌源性细胞分化;用相差显微镜、电子显微镜及免疫细胞化学方法等对培养细胞进行鉴定。2.采用左冠状动脉前降支血流阻断法建立心肌梗死模型;用彩色多普勒超声检查评价血流阻断前后心脏功能变化。3.在数字减影血管造影仪(DSA)下行冠状动脉造影,选择性将诱导的骨髓基质干
    
    细胞经左冠状动脉植入心脏内;观察植入细胞在心肌组织内的生长、分化及增殖情况;用彩色多普勒超声检查评价细胞移植前后心脏功能变化。
    结果:1.采用贴壁法,抽取2ml骨髓,放入含10ml 20%FBS DMEM的25cm2培养瓶,3天后可见散在片状生长的梭形细胞,5-氮胞苷诱导24小时,2周左右,细胞数量达到1×106 ,4周左右,细胞数量达到2.7×108;相差显微镜检查见培养细胞由梭形变为长杆状,可见条纹样结构;电子显微镜见胞浆内核糖体丰富,线粒体较丰富,有较多肌丝样结构,单核,位于细胞中央;免疫细胞化学示抗结蛋白(desmin)、平滑肌肌动蛋白(α-smooth muscle actin)、肌钙蛋白 I(troponin I)等抗体染色阳性;证实骨髓基质干细胞经5-氮胞苷诱导后分化为肌源性细胞。2.采用冠状动脉血流阻断法,阻断左冠状动脉前降支第一对角支下动脉血流90分钟,心电图肢体导联示ST段压低,彩色多普勒超声示心室腔扩大、心室前壁局部运动功能障碍、左心室射血分数下降,肌钙蛋白I试剂盒检查阳性,组织学和电镜检查见心肌内疤痕组织形成,证实心肌梗死形成。3.心肌梗死后4周,行冠状动脉造影,将诱导的骨髓基质干细胞用4',6-二脒基-2-苯基吲哚(DAPI)标记后经左冠状动脉注入心脏内,细胞移植后4周,复查心脏彩色多普勒超声,提示心功能改善,心脏标本切片,荧光显微镜检查证实正常心肌和心肌梗死区有荧光细胞,组织学和电子显微镜检查发现正常心肌和心肌梗死区有异源性肌细胞,证实植入细胞存活、分化、增殖。
    结论:5-氮胞苷促进了骨髓基质干细胞的肌源性分化;经左冠状动脉选择性植入诱导后的自体骨髓基质干细胞能在正常心肌和心肌梗死区存活、分化、增殖,改善心脏功能,提示利用自体骨髓基质干细胞移植可实现心肌再生,有潜在临床应用价值。
Myocardial infarction (MI)is one of the major health killers for human being , the morbidity of which is increasingly soaring in concomitance with the improvement of people's life . Due to the myocardial ischemia and anoxia in the infarctional areas, some pathological changes take place, such as the massive necrosis of cardiomyocytes, the proliferation of fibrous tissues, the formation of scars, the remodeling and dysfunction of cardiac ventricle, and often end in refractory heart failure. The present treatments for MI mainly aim at saving the dying cardiomyocytes , improving the function of survival cardiomyocytes , blocking the neuroendocrine system and inversing ventricular remodeling . Although the unregenerability of cardiomyocytes makes it impossible to restore myocardial tissues from the scar tissues , fortunately , cell transplantation can increase the amount of cardiomyocytes in lesion and therefore provide a new therapeutic strategy for MI repair . In recent years, many progresses have been made by foreign and domestic research workers in the field of cellular cardiomyoplasty, especially regarding the embryonic stem cells, the fetal cardiomyocytes, the skeletal muscle myoblasts, the autologous cardiomyocytes, and so on, engrafted into the myocardium. However, the optimal cell type available for transplantation has not been confirmed yet, owing to the problems of the sources of donor cells, the immunological rejection caused by the xenogenic cell transplantation, and the junctions between the grafted cells and the host
    
    cardiomyocytes. As a sort of multipotential stem cell, the bone marrow stromal stem cells have been found to be able to differentiate into myogenic cells or cardiomyocytes after induction in vitro. The objective of the studies is to observe the in vitro culture of the bone marrow stromal stem cells, to observe their influences on the growth, differentiation, and function of postinfarction myocardium after selectively implanted them into the myocardial tissues via the coronary artery, and to provide experimental data of clinical applications to myocardial regeneration with the bone marrow stromal stem cells .
    Methods: 1.The bone marrow stromal stem cells were isolated by their plastic adherence, then induced by 5-azacytidine to facilitate their differentiation into myogenic cells. The phase-contrast microscope, electron microscope, and immunocytochemical stain were applied to identify the induced cells. 2. An animal model of canine MI was created by means of clipping the anterior descending branch of the left coronary artery. Color Doppler ultrasonic examinations were performed to evaluated the changes of ventricular function before and after clipping left coronary. 3. With the help of coronary artery angiography, the induced bone marrow stromal stem cells labeled with DAPI were selectively engrafted into myocardium through the left coronary artery. The growth, differentiation, and proliferation of these cells in the myocardial tissue were detected. Again, Color Doppler ultrasonic examination was performed to evaluated the changes of ventricular function before and after cell implantation.
    Results: 1. 2ml bone marrow was extracted and primary cultured in 25cm2 culture flask containing 10ml 20%FBS DMEM. The scattering clone fusiform cell clusters were observed 3 days later, and were induced by 5-azacytidine for 24 hours. The amount of cells amplified to 1×106 and 2.7×108 respectively at the end of 2 and 4 weeks .The cultured cells showed
    
    stick-like morphology with striated structure after 2 weeks observed by phase-contrast microscope, appeared plenty of cytoplasmic ribosome and mitochondria, much myofilament-like texture, mononuclear locating in the central of the cells after 4 weeks observed by electron microscope, and displayed positive reaction to anti-desmin, anti-smooth muscle actin, and anti-troponin I antibodies with immunocytochemical stain , all of which confirmed that the cloned bone marrow stromal stem cells differentiated into the myogenic cells with
引文
1 Soonpaa MH,Koh GY,Klug MG,et al. Formation of nascent intercalated discs between grafted fetal cardiomyocytes and host myocardium. Science,1994,264:98-101.
    2 Doris A Taylor ,B Z Atkins ,Pinata Hungspreugs ,et al.Regenerating
     Functional myocardium:improved perfomance after skeletal myoblast
     Transplantation.Nature Medicine ,1998,14:929-933.
    3 Kelley A Hutcheson , B Z Atkins ,Matthew T Hueman ,et al.Comparison
     Of benefits on myocardial performance of cellular cardiomyoplasty with
     Skeletal myoblasts and fibroblasts.Cell Transplantation ,2000,9:359-
     368.
    4 Kyung-Jong Yoo ,Ren-Ke Li ,Richard D.Weisel ,et al. Autologous smooth
     Muscle cell transplantation improved heart function in dilated cardio-
     Myopathy.Ann Thorac Surg, 2000,70:859-65.
    5 Ren-Ke Li ,Richard D.Weisel ,Donald A.G.Mickle ,et al. Autologous
     Porcine heart cell transplantation improved heart function after a
     Myocardial infarction.J Thorac Cardiovasc Surg, 2000,119:62-8.
    6 Friedensten A .Stromal mechanism of bone marrow:cloning in vitro and
     retransplantation in vivo. In :Thienfelder S, Rodt H, Kolb H
     HJ(eds) .Immunology of bone marrow transplantation.Berlin:Springer-
     Verlag.1980.pp19-20.
    7 ON Koc,HM Lazarus.Mesenchymal stem cells:heading into the clinic.Bone
     Marrow Transplantation,2001,27:235-239.
    8 Shigeyuki Wakitani,Tomoyuki Saito,Arnold I.Caplan.Myogenic cells
     derived from rat bone marrow mesenchymal stem cells exposed to 5-
     azacytidine.Muscle & Nerve,1995,18:1417-1426.
    9 Ferrari G, Cusella-De Angelis G, Coletta M. Paolucci, et al. Muscle
     regeneration by bone marrow-derived myogenic progenitors.Science ,
    
    
     1998,279:1528-1530.
    10 Shinji Makino, Keiichi Fukuda ,Shunichirou Miyoshi ,et al.Cardiomyo-
     cytes can be generated from marrow stromal cells in vitro.J Clin
     Invest,1999,103:697-705.
    11 Shinji Tomita,Ren-Ke Li,Richard D.Weisel,et al. Autologous transplan-
     tation of bone marrow cells improves damaged heart
     function.Circulation,1999,100[supplⅡ]: Ⅱ-247-Ⅱ-256.
    12 Strauer BE,Brehm M,Zeus T,et al.Introcoronary human autologous stem
     cell transplantation for myocardial regeneration following myocardial
     infarction.Dtsch Med Wochenschr,2001 Aug24,126(34-35):932-8.
    13 Robert J.Deans ,Annemarie B.Moseley .Mesenchymal stem cells:biology
     and potential clinical uses .Experimental Hematology,2000,28:875-
     884.
    14 Paolo Bianco ,Mara Riminucci ,Stan Gronthos ,et al.Bone marrow stromal
     stem cells:nature ,biology ,and potential applications .Stem Cells,
     2001, 19:180-192.
    15 Gronthos S ,Graves SE ,Ohta s ,et al .The STRO-1 positive fraction of
     adult human bone marrow contains the osteogenic precursors .Blood,
     1994,84:4164-4173.
    16 Constantinides PG ,Taylor SM ,Jones PA .Phenotypic conversion of
     cultured mouse embryo cells by aza pyrimidine nucleosides .Dev Biol,
     1978,66: 57-71.
    17 Jih-Shiuan Wang,Dominique Shum-Tim,Edgar Chedrawy,et al.The coronary
    delivery of marrow stromal cells for myocardial regeneration: pathophysiological and therapeutic implications. J Thorac Cardiovasc Surg,2001,122:699-675.
    18 C.Rajnoch, J.-C.Chachques, A.Berrebi, et al. Cellular therapy
     reverses myocardial dysfunction. J Thorac Cardiovasc Surg ,
     2001,121:871-8.
    
    
    19 Mark Sussman.Hearts and bones.Nature,2001,410:640-641.
    20 Kenneth W.Liechty,Tippi C.Mackenzie,Aimen F.Shaaban,et al. Human
     mesenchymal stem cells engraft and demonstrated site-specific
     differentiation after in utero transplantation in ship. Nature
     Medicine,2000,6:1282-1286.
    21 Donald Orlic,Jan Kajstura,Stefano Chimenti,et al. Bone marrow cells
     regenerate infarcted myocardium. Nature,2000,410:701-705.
    22 Catalin Toma,Mark F.Pittenger,Kevin S.Cahill,et al.Human mesenchymal
     stem cells differentiate to a cardiomyocyte phenotype in the adult
     murine heart.Circulation,2002,105:93-98.
    23 C.Voermans ,P.M.L.Rood ,P.L.Hordijk ,et al. Adhesion molecules invol-
     ved in transendothelial migration of human hematopoietic progenitor
     cells.Stem Cells,2000,18:435-443.
    24 Jizong Gao,James E.Dennis,Raymond F.Muzic,et al.The dynamic in vivo
     distribution of marrow-derived mesenchymal stem cells after infusion.
     Cells Tissues Organs,2001,169:12-20.
    25 Owen M.Lineage of osteogenic cells and their relationship to the
     stromal system .in:Peck WA(ed.)Bone and mineral research .vol.3.New
     York(1985):Elsevier.pp.1-25.
    26 Jih-Shiuan Wang,Dominique Shum-Tim,Edgar Chedrawy,et al.The coronary
     delivery of marrow stromal cells for myocardial regeneration:
     pathophysiological and therapeutic implications. J Thorac Cardiovasc
     Surg,2001,122:699-675.
    27 Ken Suzuki,Nigel J.Brand,Ryszard T.Smolenski,et al.Development of a
     novel method for cell transplantation through the coronary
     artery.Circulation,2000,102[supplⅢ]: Ⅲ-359-Ⅲ-364.
    28 赵学.心肌细胞移植研究进展.国外医学(心血管疾病分册),2000,27:135-
     138.
    29 Julia Dorfman ,Minh Duong ,Audrius Zibaitis ,et al.Myocardial tissue
    
    
     engineering with autologous myoblast implantation.J Thorac Cardiovasc
     Surg,1998,116:744-51.
    30 Klug MA,Soonpaa MH ,Koh GY ,et al.Genetically selected cardiomyocytes
     from differentiated embryonic stem cells form stable intracardiac
     grafts.J Clin invest,1996,98:216-24.
    31 Ren-Ke Li,Donald A.G.Mickle,Richard D.Weisel,et al.Natural history
     of fetal rat cardiomyocytes transplantation into adult rat myocardial
     scar tissue.Circulation,1997,96[supplⅡ]: Ⅱ-179-Ⅱ-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700