用户名: 密码: 验证码:
Ferroplasma thermophilum L1的分离、鉴定及应用于黄铜矿浸出的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物冶金技术是一种从矿物中提取金属的方法,特别适于处理贫矿和废矿,并具有成本低、投入小、能耗低、环境污染小等突出优点。在本文研究中,一株极端嗜酸中等嗜热的氧化亚铁古菌得到分离纯化,并鉴定为Ferroplasma属的一个新种。为了研究该古菌在硫化矿浸出中的作用,从古菌的生理生化特性出发,研究了喜温硫杆菌杆菌(Acidithiobacillus caldus)、嗜铁钩端螺旋菌(Leptospirillumferriphilum)、嗜酸硫化杆菌(Sulfobacillus acidophilus)与该古菌的不同组合对黄铜矿的浸出,同时考察了浸出过程中pH、亚铁离子浓度、三价铁离子浓度和铜离子浓度等参数的变化,并应用Real-timePCR技术考察了微生物种群的变化,讨论了以上各菌株浸出黄铜矿的机理。
     从浸矿反应器的浸出液中分离得到一株氧化亚铁古菌L1。对菌株L1进行了形态、生理生化特性研究。球状,不可运动,没有细胞壁,菌体直径大小0.4~1.0μm。最适生长温度在45℃左右,最适初始生长pH为1.0,代时约为6.65 h。可在硫酸亚铁和酵母粉同时存在的条件下兼性营养型生长,但是在只有硫酸亚铁或酵母粉的情况下该菌株不能生长。该菌株不能利用蛋白胨、葡萄糖、乳糖和半乳糖等有机物以及硫磺、硫代硫酸钠等还原态的硫进行生长。菌株L1基因组DNA G+C含量为34.1mol%。基于16S rRNA序列同源性构建了系统发育树,结果表明此株菌是属于Ferroplasma属的古菌,与F.cupricumulans BH2~T具有99.0%的序列相似性。菌株L1与F.cupricumulans BH2~T的分子杂交相似度为46.3%。基于以上实验结果表明菌株L1应代表Ferroplasma属的一个新种,命名为F.thermophilum L1(CCTCC AB207143~T)。
     利用喜温硫杆菌杆菌、嗜铁钩端螺旋菌、嗜酸硫化杆菌和菌株L1四种菌的不同组合进行黄铜矿摇瓶浸出实验。化能自养和化能兼性生长的中等嗜热菌同时存在能有效促进黄铜矿的浸出速率和浸出效率。具有不同生理特性(包括铁硫转换和有机物与无机物的利用)的菌株之间的相互作用有利于促进黄铜矿的浸出。在含有嗜铁钩端螺旋菌的浸出体系中,黄铜矿浸出速率在浸出15-20天后开始下降,这与浸出过程中在矿物表面形成的黄钾铁矾钝化膜有关。各浸矿体系矿渣的X-衍射分析表明Fe~(3+)浓度较低的浸矿液中没有黄钾铁矾的形成,相对于pH,Fe~(3+)的浓度可能是黄钾铁矾形成的更重要原因。
     利用实时荧光定量PCR技术对浸矿微生物种群的分析表明,在浸矿初期喜温硫杆菌杆菌和嗜铁钩端螺旋菌占较大的比例,但是到了浸矿后期嗜铁钩端螺旋菌在种群中的比例明显降低。F.thermophilum在浸矿前期占据很少的数量,而到浸矿后期在种群中占据较大比例。嗜酸硫化杆菌在种群中的比例没有太大变化。实验结果也是与它们的生理生化特性相适应的。
Bioleaching is an economical method for the recovery of metals from minerals, especially from low grade ores, overburden and waste from current mining operations, which requires moderate capital investment with low operating cost. Furthermore, bioleaching are environmentally friendly. In the present study, an extremely acidophilic and moderately thermophilic iron-oxidizing archaeon was isolated and characterized, and the strain represents a new species of genus Ferroplasma. To understand the role iron-oxidizing archaeon plays in mineral bioleaching, according to its physiological characteristics we focused on the effects of variously defined combinations of At. caldus, L. ferriphilum, S. acidophilus and F. thermophilum on copper dissolution from chalcopyrite. The variation of pH, ferrous iron, ferric iron and copper was also investigated. The real-time quantitative PCR was applied to investigate the population dynamics of moderate thermophiles during bioleaching and the bioleaching mechanisms of chalcopyrite by the above microorganisms were discussed.
     A ferrous iron-oxidizing archaeon, named L1, was isolated from a chalcopyrite-leaching bioreactor. Strain L1 is a non-motile coccus that lacks cell wall. The diameter of strain L1 ranges from 0.4 to 1.0μm. Strain L1 has a temperature optimum of45℃and the optimum initial pH for growth is 1.0. The generation time of strain L1 is 6.65 h. Strain L1 is capable of growth on ferrous iron and yeast extract. No growth occurred when ferrous iron or yeast extract presented as the sole energy source. The strain can not grow on following organic substrates: peptone, glucose, lactose and galactose. Strain L1 is also not capable of using elemental sulfur, sodium thiosulfate as energy sources. The morphological, biochemical and physiological characterization were investigated. The G+C content of strain L1 is 34.1%. Analysis based on 16S rRNA gene sequence indicated that the strain L1 should be grouped in the genus Ferroplasma, and stain L1 is most closely related to F. cupricumulans BH2~T with 99% similarity in gene sequence. The DNA-DNA similarity hybridization between F. cupricumulans BH2~T and strain L1 was 46.3%. Based on above results, strain L1 should represent a new species of genus Ferroplasma and is proposed the name F. thermophilum L1 (CCTCC AB207143~T).
     The bioleaching of chalcopyrite by variously defined combinations of At. caldus, L. ferriphilum, S. acidophilus and F. thermophilum was studied in shake flask cultures. The complex consortia containing both chemoautotrophic and chemomixotrophic moderate thermophiles were found to be the most efficient in all of those tested. Mutualistic interactions between physiologically distinct moderately thermophilic acidophiles, involving transformations of iron and sulfur and transfer of organic and inorganic compound, were considered to play a critical role in optimizing chalcopyrite dissolution. The decrease of chalcopyrite dissolution rate in leaching systems containing L. ferriphilum after 15-20 days coincided with the formation of jarosite precipitation on the mineral surface during the bioleaching as a passivation layer. The results of XRD indicated that low concentration of ferric iron reduced jarosite formation and the high concentration of ferric iron might be a more important parameter for forming jarosite precipitation than pH during bioleaching process.
     The results of real-time PCR analysis indicate At. caldus and L. ferriphilum were the dominant organisms initial during bioleaching. The proportion of L. ferriphilum in total prokaryotes decreased in the latter stages. F. thermophilum was detected the numerically dominant organism in the latter stages, though the proportion of F. thermophilum in total prokaryotes was small initially. The proportion of S. acidophilus did not change obvious during bioleaching of chalcopyrite. The analysis results were consistent with physiological characteristics of these strains.
引文
[1]Brieriey L.细菌的氧化作用[J].湿法冶金,1996,4:44-47.
    [2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [3]Colmer A R,Hinckle M E.The role of microorganisms in acid mine drainage a preliminary report[J].Science,1947,106:253-256.
    [4]Temple K L,Delchamps E W.Autotrophic bacteria and the formation of acid in bituminous coal mines[J].Applied Microbiology,1953,1:255-258.
    [5]Leathen W W,Kinsel N A,Braley S A.Ferrobacillus ferrooxidans:a chemosynthetic autotrophic bacterium[J].Journal of Bacteriology,1956,72(5):700-704.
    [6]Zimmerley S R,Wilson D G,Prater J D.Cyclic leaching process employing iron oxidizing bacteria.US patent2,2829964,1958.
    [7]Olson G J,Brierley J A,Brierley C L.Bioleaching review part B:progress in bioleaching:applications of microbial processes by the minerals industries[J].Applied Microbiology and Biotechnology,2003,63(3):249-257.
    [8]Rohwerder T,Gehrke T,Kinzler K,et al.Bioleaching review part A:progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J].Applied Microbiology and Biotechnology,2003,63(3):239-248.
    [9]Suzuki I.Microbial leaching of metals from sulfide minerals[J].Biotechnology Advances,2001,19(2):119-132.
    [10]Brierley J A,Brierley C L.Present and future commercial applications of biohydrometallurgy[J].Hydrometallurgy,1999,59:233-239.
    [11]Morin D,Lips A,Pinches A,Huisman J,Frias C,Norberg A,Forssberg E.BioMinE integrated project for the development of biotechnology for metal-bearing materials in Europe[C].In Harrison S.T.L,Rawlings D.E.and Petersen J.(editors),Proceedings of 16th IBS,2005.
    [12]Yang S,Xie J,Qiu G,H.Research and application of bioleaching and biooxidation technologies in China[J].Minerals Engineering,2002,15(5):361-363.
    [13]Ruan R,Wen J.Bacterial heap-leaching:practice In Zijinshan copper mine[C].In Harrison S.T.L,Rawlings D.E.and Petersen J.(editors),Proceedings of 16th IBS,2005:137-144.
    [14]Rawlings D E,David D,du Plessis C.Biomineralization of metal-containing ores and concentrates[J].Trends in Biotechnology,2003,21(1):38-44.
    [15]Clark M E,Batty J,van Buuren C,et al.Biotechnology in minerals processing:technological breakthroughs creating value[C].In Harrison S.T.L,Rawlings D.E.and Petersen J.(editors),Proceedings of 16~(th)IBS,2005.
    [16]邓敬石.中等嗜热菌强化镍黄铁矿浸出的研究:[博士学位论文].昆明:昆明理工大学,2002.
    [17]Bustos S,Castro S,Montealegre R.The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre[J].FEMS Microbiology Reviews,1993,11:231-236.
    [18]C.Brierley.Bacterial succession in bioheap leaching[J].Hydrometallurgy,2001,59:249-255.
    [19]魏德洲.资源微生物技术[M].北京:冶金工业出版社,1999.
    [20]Visca P,Bianchi E,Polidoro M,et al.A new solid medium for isolating and enumerating Thiobacillus ferrooxidans[J].Journal of General and Applied Microbiology,1989,35(2):71-81.
    [21]Jr Garcia O,Mukai J K,Andrade C B.Growth of Thiobacillus ferrooxidans on Solid Medium:affects of some surface-active agents on colony formation[J].Journal of General and Applied Microbiology,1992,38(3):279-282.
    [22]Khalidfariq A M,Bhatti T M,Umar M.An improved solid medium for isolation,enumeration and genetic investigations of autotrophic iron-and sulphur-oxidizing bacteria[J].Applied Microbiology and Biotechnology,1993,39(2):259-263.
    [23]Sugio T,Uemura S,Makino I,et al.Sensitivity of iron-oxidizing bacteria Thiobacillus ferrooxidans and Leptospirillum ferrooxidans[J].Applied and Enviromental Microbiology,1994,36(2):722-725.
    [24]de Jong G A H,Hazeu W,Bos P,et al.Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans[J].Microbiology,1997,14(3):499-504.
    [25]Sanhueza A,Eerier I J,Vargas T,et al.Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties[J].Hydrometallurgy,1999,51(1):115-129.
    [26]Sampson M I,Phillips C V,Blake R C.Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides[J].Minerals Engineering,2000,13(4):373-389.
    [27]Sampson M I,Phillips C V,Ball A S.Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis[J]. Minerals Engineering, 2000,13(6):643-656.
    
    [28] Okibe N, Johnson D B. Biooxidation of pyrite by defined mixed culture of moderately thermophilic acidophiles in pH-controlled bioreactor: significance of microbial interaction[J]. Biotechnology and Bioengineering, 2004, 87(5):574-583.
    
    [29] Rawlings D E. Microbially assisted dissolution of minerals and its use in the mining industry[J]. Pure and Applied Chemistry, 2004, 76(4): 847-859.
    
    [30] Johnson D B. Biodiversity and ecology of acidophilic microorganisms[J]. FEMS Microbiology Ecology, 1998,27(4):307-317.
    
    [31] Markosyan G E. A new iron-oxidizing bacterium—Leptospirillum ferrooxidans nov. gen. nov. sp (in Russian)[J]. Biol J Armenia, 1972,25:26-29.
    
    [32] Okibe N, Gericke M, Hallberg K B, et ah Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J]. Applied and Environmental Microbiology, 2003,69(4): 1936-1943.
    
    [33] Amaro A M, Hallberg K B, Lindstr(o|¨)m E B, et al. Animmunological assay for detection and enumeration of thermophilic biomining microorganisms[J]. Applied and Environmental Microbiology, 1994, 60(9):3470-3473.
    
    [34] Bridge T A M, Johnson D B. Reduction of soluble iron and reductive dissolution of ferric iron containing minerals by moderately thermophilic iron-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1998,64(6):2181-2186.
    
    [35] Brierley C L, Brierley J A. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring[J]. Microbiology, 1973, 19(2):183-188.
    
    [36] Segerer A, Neuner A, Kristjansson J K, et al. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria[J]. International Journal of Systematic Bacteriology, 1986, 36(4):559-564.
    
    [37] Huber G, Stetter K O. Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers[J]. Systematic and Applied Microbiology, 1991,14(4):372-378.
    
    [38] Fuchs T, Huber H, Teiner K, et al. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany[J]. System and Applied Microbiology, 1996, 18(4):560-566.
    
    [39] Brock T D, Brock K M, Belly R T, et al. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature[J]. Archives of Microbiology, 1972, 84(1):54-68.
    
    [40] Nemati M, Harrison S T L. Effect of solid loading on thermophilic bioleaching of sulfide minerals[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(7):526-532.
    
    [41] Larsson L, Olsson G, Holst O, et al. Pyrite oxidation by thermophilic archaebacteria[J]. Applied and Environmental Microbiology, 1990, 56(3):697-701.
    
    [42] Golyshina O V, Timmis K N. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments[J]. Environmental Microbiology, 2005, 7(9): 1277-1288.
    
    [43] Golyshina O V, Pivovarova T A, Karavaiko G L, et al. Ferroplasma acidiphilum gen. nov., sp. Nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam.nov., comprising a distinct lineage of the Archaea[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50:997-1006.
    
    [44] Edwards K J, Bond P L, Gihring T M, et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage[J]. Science, 2000, 287(5459): 1796-1799.
    
    [45] Dopson M, Baker-Austin C, Hind A, et al. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments[J]. Applied and Environmental Microbiology, 2004, 70(4):2079-2088.
    
    [46] Hawkes R B, Franzmann P D, O'hara G, et al. Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap[J]. Extremophiles, 2006,10(6):525-530.
    
    [47] Hawkes R B, Franzmann P D, Plumb J J. Moderate thermophiles including "Ferroplasma cupricumulans" sp. Nov. dominate an industrial-scale chalcocite heap bioleaching operation[J]. Hydrometallurgy, 2006, 83:229-236.
    
    [48] Demergasso C S, Galleguillos P A, Escudero L V, et al. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap[J]. Hydrometallurgy, 2005, 80(4):241-253.
    
    [49] Gihring T M, Bond P L, Peters S C, et al. Arsenic resistance in the archaeon "Ferroplasma acidarmanus": new insights into the structure and evolution of the ars genes[J]. Extremophiles, 2003, 7(2): 123-130.
    
    [50] Macalady J L, Vestling M M, BaumLer D, et al. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid[J]. Extremophiles, 2004, 8(5):411-419.
    
    [51] Baumler D J, Hung K F, Jeong K C, et al. Production of methanethiol and volatile sulfur compounds by the archaeon "Ferroplasma acidarmanus"[J]. Extrmophiles, 2007,11(6):841-851.
    
    [52] Pace N R, Stahl D A, Lane D J, et al. The analysis of natural microbial communities by ribosomal RNA sequences[J]. Microbial Ecology, 1985,9:1-55.
    
    [53] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995,59(1):143-169.
    
    [54] Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community quantitative PCR using fluorogenic probes[J]. Applied and Environmental Microbiology, 2000, 66(11):5066-5072.
    
    [55] Nadkarni M A, Martin F E, Jacques N A, et al. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set[J]. Microbiology, 2002,148:257-266.
    
    [56] Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J]. Biotechnology Letters, 2001,23(15):1205-1208.
    
    [57] Clement B G, Kehl L E, DeBord K L, et al. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities[J]. Journal of Microbiological Methods, 1998,31(3):135-142.
    
    [58] Dunbar J, Takala S, Barns S M, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Applied and Environmental Microbiology, 1999,65(4): 1662-1669.
    
    [59] Emily S, Li Y, Liu W T. DNA microarray technology in microbial ecology studies-principle, applications and current limitations[J]. Microbes and Environments, 2003,18(4): 175-187.
    
    [60] Loy A, Lehner A, Lee N, et al. Oligonucleotide microarray for 16S rRNA gene-based detections of all recognized lineages of sulfate-reducing prokaryotes in the environment[J]. Applied and Environmental Microbiology, 2002, 68(10):5064-5081.
    
    [61] Cross N C. Quantitative PCR techniques and applications[J]. British Journal of Haematology, 1995, 89(4):693-697.
    [62] Zimmermann K, Mannhalter J W. Technical aspects of quantitative competitive PCR[J]. Biotechniques, 1996, 21(2):268-272.
    
    [63] Lee S Y, Bollinger J, Bezdicek D, et al. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method[J]. Applied and Environmental Microbiology, 1996,62(10):3787-3793.
    
    [64] Phillips C J, Paul E A, Prosser J L. Quantitative analysis of ammonia oxidizing bacteria using competitive PCR[J]. FEMS Microbiology Ecology, 2000, 32(2):167-175.
    
    [65] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔΔC) method[J]. Methods, 2001,25(4):402-408.
    
    [66] van Eiden L J R, Nijhuis M, Schipper P, et al. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR[J]. Journal of Clinical Microbiology, 2001,39(1): 196-200.
    
    [67] Lewin S R, Vesanen M, Kostrikis L, et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy[J]. Journal of Virology, 1999,73(7):6099-6103.
    
    [68] Qin Y, Zhang X, Ren H, et al. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment[J]. Applied Microbiology and Biotechnology, 2008, 79(1):135-145.
    
    [69] Gueimonde M, T(o|¨)lkk(o|¨) S, Korpim(a|¨)ki T, et al. New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples[J]. Applied and Environmental Microbiology, 2004, 70(7):4165-4169.
    
    [70] Park J W, Crowley D E. Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE[J]. Biotechniques, 2005, 38(4):579-586.
    
    [71] Lee S Y, Bollinger J, Bezdicek D, et al. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method[J]. Applied and Environmental Microbiology, 1996,62(10):3787-3793.
    
    [72] Witymer C T, Hemmann M G, Moss A A, et al. Continuous fluorescence monitoring of rapid cycle DNA amplification[J]. Biotechniques, 1997, 22(1):130-138.
    
    [73] Woo T H S, Patel B K, Cinco M, et al. Identification of Leptospira biflexa by real-time homogeneous detection of rapid cycle PCR product[J]. Journal of Microbiological Methods, 1999,35(1):23-30.
    [74]Tay S T L,Hemond F H,Krumholz L R,et al.Population dynamics of two toluene degrading bacterial species in a contaminated stream[J].Microbial Ecology,2001,41(2):124-131.
    [75]Hermansson A,Lindgren P E.Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR[J].Applied and Environmental Microbiology,2001,67(2):972-976.
    [76]Liu C,Plumb J,Hendry P.Rapid specific detection and quantification of bacteria and archaea involved in mineral sulfide bioleaching using real-time PCR[J].Biotechnology and Bioengineering,2006,94(2):330-336.
    [77]Klotz M G,Norton J M.Multiple copies of ammonia monooxygenase(amo)operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria[J].FEMS Microbiology Letters,1998,168(2):303-311.
    [78]Dopson M,Lindstrom E B.Potential role of thiobacillus ealdus in arsenopyrite bioleaching[J].Applied and Environmental Microbiology,1999,65(1):36-40.
    [79]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [80]Jantzen E,Sonesson A,Tangen T,et al.Hydroxy-fatty acid profiles of Legionella species:diagnostic usefulness assessed by principal component analysis[J].Journal of Clinical Microbiology,1993,31(6):1413-1419.
    [81]Baltes N,Hennig-Pauka I,Jacobsen I,et al.Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection[J].Infection and Immunity,2003,71(12):6784-6792.
    [82]Mesbah M,Premachandram U,Whitman W.Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography[J].International Journal of Systematic Bacteriology,1989,39(2):159-167.
    [83]Huss V A R,Festl H,Schleifer K H.Studies on spectrophotometric determination of DNA hybridization from renaturation rates[J].Systematic and Applied Microbiology,1983,4:184-192.
    [84]Fox G E,Wisotzkey J D,Jurtshuk P.How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity[J].International Journal of Systematic Bacteriology,1992,42:166-170.
    [85]Wagner-Dobler I,Rheims H,Felske A,et al.Oceanibulbus indolifex gen.nov.,sp.nov.,a North Sea alphaproteobacterium that produces bioactive metabolites[J].International Journal of Systematic Evolution Microbiology,2004,54:1177-1184.
    [86]Wiik R,Stackebrandt E,Valle O,et al.Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis[J]. International Journal of Systematic Bacteriology, 1995,45(3):421-428.
    
    [87] Wayne L G., Brenner D J, Colwell R R, et al. Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics[J]. International Journal of Systematic Bacteriology, 1987,37(4):463-464.
    
    [88] Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Applied and Environmental Microbiology, 1999,65(1):319-321.
    
    [89] Bevilaqua D, Leite A L L C, Garcia O, et al. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochemistry, 2002, 38(4):587-592.
    
    [90] Stott M B, Watling H R, Franzmann P D, et al. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching[J]. Mineral Engineering, 2000,13:1117-1127.
    
    [91] Fowler T A, Crundwell F K. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J]. Applied and Environmental Microbiology, 1999,65(12):5285-5292.
    
    [92] Klauber C, Parker A, van Bronswijk W, et al. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy[J]. International Journal of Mineral Processing, 2001, 62:65-94.
    
    [93] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides -A review[J]. Hydrometallurgy, 2006, 84:81-108.
    
    [94] Pogliani C, Donati E. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation[J]. Process Biochemistry, 2000,35(9):997-1004.
    
    [95] Hallberg K B, Johnson D B. Biodiversity of acidophilic prokaryotes[J]. Advances in Applied Microbiology, 2001,49:37-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700