用户名: 密码: 验证码:
长白山森林生态系统土壤氮矿化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是植物生长和发育所需的大量营养元素之一。在森林生态系统中,氮对森林群落的演替有重要的影响;对维护群落稳定性和保持一定树种组成有着重要作用。同时氮矿化对揭示生态系统功能、生物地球化学循环过程本质也有重要意义。
     本论文以我国长白山北坡不同森林生态系统土壤氮矿化为研究对象,分析不同林型土壤氮矿化的时空动态特征。沿长白山北坡以海拔高度、森林类型等因素为指标设置实验样地。样地按海拔从低到高依次为:1号样地,位于阔叶红松林带,海拔761m;2号样地,位于红松云冷杉林带,海拔1258m;3号样地,位于岳桦云冷杉林带,海拔1582m。
     利用周才平等(2001)温度与氮矿化速率关系方程式,将野外实地测量的土壤温度(5cm)带入方程,计算出不同植被类型土壤氮矿化速率。分析不同林型土壤供氮能力以及土壤氮矿化速率与环境因素之间的关系、变化规律等。主要结果如下:
     1、长白山北坡三种不同植被类型土壤氮矿化速率分别是:阔叶红松林0.12kg/(hm2·d)、红松云冷杉林0.09 kg/(hm2·d)和岳桦云冷杉林0.07 kg/(hm2·d)。三种不同植被类型土壤年氮矿化量分别是:阔叶红松林8.34 t·hm-2·yr-1、红松云冷杉林7.22 t·hm-2·yr-1和岳桦云冷杉林6.74 t·hm-2·yr-1。结果表明,阔叶红松林土壤供氮能力最强。
     2、土壤氮矿化速率的季节变化:三种不同植被类型土壤氮矿化速率都呈明显的季节变化规律。在不同的季节时期内,氮矿化速率有所不同。
     3、土壤氮矿化速率随海拔变化:在同一时间内,三种不同植被类型土壤氮矿化速率随海拔的升高而逐渐降低。
     4、土壤氮矿化速率与气温的关系:土壤氮矿化速率与气温的关系方程式为三次多项式,两者呈显著相关(R2>0.95)。
Nitrogen is one of the essential element plant needs in the period of growth. In the forest ecology system,nitrogen has important influent on forest community succession. Nitrogen also plays an important role in the maintenance community stable and keeps a certain tree species composition.
     Soil nitrogen mineralization in different forest type of Changbai Mountain is reaserched in this paer. Sample plots are setted with elevation and forest type in the north slope of Changbai Mountain. Sample plot with elevation from low to high:Ⅰsample plot, broad leaved Korean pine forest , elevation 761m;Ⅱsample plot, Korean pine spruce fir forest , elevation 1258m,Ⅲsample plot, birch spruce fir forest, elevation 1582m.
     Using correlation equation of temperature and nitrogen mineralization rate, soil temperature of field-survey record is substituted in equation and calculated nitrogen mineralization rate of different forest type. Soil nitrogen-supplying capacities and relationship between nitrogen mineralization rate and environment factors.Main results as follows:
     1、Soil nitrogen mineralization rate of different forest type on north slope of Changbai Mountain: broad leaved Korean pine forest 0.12kg/(hm2·d), Korean pine spruce fir forest 0.09 kg/(hm2·d), birch spruce fir forest 0.07 kg/(hm2·d). Quantity of the mineralized nitrogen of different forest type: broad leaved Korean pine forest 8.34 t·hm-2·yr-1, Korean pine spruce fir forest 7.22 t·hm-2·yr-1, birch spruce fir forest 6.74 t·hm-2·yr-1.The results showed that nitrogen-supplying capacities of broad leaved Korean pine forest is the strongest.
     2、The seasonal change of soil nitrogen mineralization rate: nitrogen mineralization rate of three different forest types has evident seasonal variability.
     3、Changes of nitrogen mineralization rate with elevation: In the same time, nitrogen mineralization rate gradually declines with altitude rising in different forest type.
     4、The relationship between nitrogen mineralization and air temperature: Relationship equations between the soil nitrogen mineralization rate and air temperature is cubic polynomial and they showed significantly(R2>0.95).
引文
[1]. 车宝玺,张学龙,敬文茂,成彩霞,王荣新.气候变暖对祁连山草甸草原土壤氮素矿化作用的影响[J].甘肃林业科技,2006,31(1):1-4.
    [2]. 陈伏生,曾德慧,何光元.森林土壤氮素的转化与循环[J].生态学杂志,2004,23(5):126-133.
    [3]. 陈祥伟 , 陈立新 , 刘伟琦 . 不同森林类型土壤氮矿化的研究 [J]. 东北林业大学学报,1999,27(1):5-9.
    [4]. 陈小红.退耕还林地土壤氮素动态研究[D].四川:四川农业大学,2002:
    [5]. 仇少君,彭佩钦,刘强,荣湘民.土壤微生物生物量氮及其在氮素循环中作用[J].生态学杂志,2006,25(4):443-448.
    [6]. 杜建军,李生秀,李世清,高压军,徐惠善.不同肥水条件旱地土壤供氮能力的影响[J].西北农业大学学报,1998,26(6):1-5.
    [7]. 范晓辉,孙永红,林德喜,孟爱民,钦绳武.长期试验地红壤与潮土的矿化和硝化作用特征比较[J].土壤通报,2005,36(5):672-674.
    [8]. 方运霆,莫江明,Per Gundersen,周国逸,李德军.森林土壤氮素转换及其对氮沉降的响应[J].生态学报,2004,24(7):1523-1531.
    [9]. 龚伟,胡庭兴,王景燕,宫渊波,冉华.川南天然常绿阔叶林人工更新后枯落物对土壤供氮潜力的影响[J].北京林业大学学报,2006,28(2):64-72.
    [10]. 甘建民,孟盈,郑征,莎丽清,冯志立.施肥对热带雨林下种植砂仁土壤氮矿化和硝化作用的影响[J].农业环境科学学报,2003,22(2):174-177.
    [11]. 高丽丽.西藏土壤有机质和氮磷钾状况及其影响因素分析[D].四川:四川农业大学,2004:
    [12]. 韩兴国,李凌浩,黄建辉.生物地球化学概论[D].北京:高等教育出版社,2000:
    [13]. 郝占庆,郭水良,叶吉.长白山北坡木本植物分布与环境关系的典范对应分析[J].植物生态学报,2003,27(6):733-741.
    [14]. 巨晓棠,李生秀.土壤氮素矿化的温度水分效应[J].植物营养与肥料学报,1998,4(1):37-42.
    [15]. 康健.贺兰山西坡不同草地类型土壤微生物碳、氮特征[D].兰州:兰州大学,2006:
    [16]. 刘宾,李辉信,朱玲,焦加国,陈小云,胡锋.接种蚯蚓对潮土氮素矿化特征的影响[J].土壤学报,2007,44(1):98-105.
    [17]. 刘宾.蚯蚓活动对土壤氮素矿化及微生物生物量的影响[D]. 南京:南京农业大学,2006:
    [18]. 刘芳.小麦吸收肥料氮和土壤氮的探讨[J].核农学报,1994,15(2):81-84.
    [19]. 刘杏认,董云社,齐玉春,Manfred Domroes.温带典型草地土壤净氮矿化作用研究[J].环境科学,2007,28(3):633-639.
    [20]. 刘育红,吕军.施外源氮对稻田土壤氮素矿化的影响[J].青海大学学报,2005,23(2):43-46.
    [21]. 刘宝东.实验室培养条件下森林暗棕壤的氮矿化特征[D].吉林:东北林业大学,2006:
    [22]. 李贵桐,赵紫娟,黄元仿,李宝国.秸秆还田对土壤氮素转化的影响[J].植物营养与肥料学报,2002,8(2):162-167.
    [23]. 李贵才,韩兴国,黄健辉,唐建维.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报,2001,21(7):1187-1195.
    [24]. 李明锐,莎丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究[J].应用生态学报,2005,16(1):54-58.
    [25]. 李仁岗,王淑敏,王克武,吴荣臻,吴文可.冬小麦土壤氮和肥料氮的吸收及氮素平衡的研究[J].土壤通报,1982,13(4):122-124.
    [26]. 李辉信,毛小芳,胡锋,马吉平.食真菌线虫与真菌的相互作用及其对土壤氮素矿化的影响[J].应用生态学报,2004,15(1):2304-2308.
    [27]. 李 德 文 , 兰 立 达 . 川 西 亚 高 山 白 桦 林 内 空 气 和 土 壤 温 度 动 态 [J]. 四 川 林 业 科技,2006,26(2):27-32.
    [28]. 李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):232-239.
    [29]. 李菊梅.土壤氮素矿化特征的研究[D].陕西:西北农林科技大学,2001:
    [30]. 李检舟,莎丽清,王君,冯文婷,陈建会,李江林.云南哀牢山中山湿性常绿阔叶林土壤氮矿化季节变化[J].山地学报,2006,24(2):186-192.
    [31]. 李玉中,祝廷成,李健东,周道玮.火烧对草地土壤氮总矿化、硝化及无机氮消耗速率的影响[J].应用生态学报,2003,14(2):223-226.
    [32]. 廖中建,黎理.土壤氮素矿化研究进展[J].湖南农业科学,2007,(1):56-59.
    [33]. 孟盈,薛敬意,莎丽清,唐建维.西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究[J].植物生态学报,2001,25(1):99-104.
    [34]. 毛小芳,李辉信,龙梅,胡锋.不同食细菌线虫取食密度下线虫对细菌数量、活性及土壤氮素矿化的影响[J].应用生态学报,2005,16(6):1112-1116.
    [35]. 穆兴民,樊小林.土壤氮素矿化的生态模型研究[J].应用生态学报,1999,10(1):114-118.
    [36]. 莫江明,彭少麟,方运霆.鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J].生态学报,2001,21(3):492-497.
    [37]. 聂光明.应用 15N 标记法对氮肥的吸收利用、固定与损失规律及氮肥增效剂的研究[J].土壤肥料,1980,12(3):27-30.
    [38]. 彭 令 发 , 郝 明 德 , 来 璐 . 土 壤 有 机 氮 组 分 及 其 矿 化 模 型 研 究 [J]. 水 土 保 持 研究,2003,10(1):46-50.
    [39]. 屈明华.温带森林土壤有效态氮营养生境演变特征[D].吉林:东北林业大学,2005:
    [40]. 荣兴民,陈玉成,王开运,杨万勤。森林土壤碳氮过程研究现状和展望[J].内蒙古林业科技,2004,1(1):30-35.
    [41]. 苏波,韩兴国,渠春梅,韩建辉.东灵山油松纯林和油松-辽东栎针阔混交林土壤氮素矿化/硝化作用研究[J].植物生态学报,2001,25(2):195-203.
    [42]. 苏波,韩兴国,渠春梅.森林土壤氮素可利用性的影响因素研究综述[J].生态学杂志,2002,21(2):40-46.
    [43]. 莎丽清,孟盈,冯志立,郑征,曹敏,刘宏茂.西双版纳不同热带森林土壤氮矿化和硝化作用研究[J].植物生态学报,2000,24(2):152-156.
    [44]. 田茂洁.土壤氮素矿化影响因子研究进展[J].西华师范大学学报,2004,25(3):298-303.
    [45]. 田育军.长期不同施肥土壤供氮特性研究[D].甘肃:甘肃农业大学,2000:
    [46]. 王 艳 杰 , 邹 国 元 , 付 桦 , 刘 宏 斌 . 土 壤 氮 素 矿 化 研 究 进 展 [J]. 中 国 农 学 通报,2005,21(10):203-208.
    [47]. 王常慧,邢雪荣,韩兴国.温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J].生态学报,2004,24(11):2472-2476.
    [48]. 王常慧.内蒙古温带典型草原土壤净氮矿化作用[D].北京:中国科学院研究生院,2005:
    [49]. 王琳,欧阳华,周才平,张锋,白军红,彭奎.贡嘎山东坡土壤有机质及氮素分布特征[J].地理学报,2004,59(6):1012-1019.
    [50]. 王斌.贺兰山西麓不同海拔高度土壤氮素矿化作用变异特征[D].兰州:兰州大学,2006:
    [51]. 王斌,陈亚明,周志宇.贺兰山西坡不同海拔梯度上土壤氮素矿化作用的研究[J]. 中国沙漠,2007,27(3)483-493.
    [52]. 王瑾.森林生态系统中养分循环特征的比较研究[D]. 北京:中国科学院,2002:
    [53]. 王霞.蚯蚓活动对稻麦轮作土壤氮、磷的影响[D].南京:南京农业大学,2005:
    [54]. 吴纪华,宋慈玉,陈家宽.食微线虫对植物生长及土壤养分循环的影响[J].生物多样性,2007,15(2):124-133.
    [55]. 吴建国,苌伟,艾丽,常学向.祁连山中部四种典型生态系统土壤氮矿化的研究[J].生态环境,2007,16(3):1000-1006.
    [56]. 杨小红,董云社,齐玉春,耿远波,耿会立.草地生态系统土壤氮转化过程研究进展[J].中国草地[J],2004,26(2):54-62.
    [57]. 闫恩荣.常绿阔叶林退化过程中土壤的养分库动态及植物的养分利用策略[D].上海:华东师范大学,2006:
    [58]. 周才平,欧阳华,宋明华.中国森林生态系统氮循环特征与生产力间的相互关系[J].应用生态学报,2005,16(2):203-206.
    [59]. 周才平,欧阳华.长白山两种主要林型下土壤氮矿化速率与温度的关系[J].生态学报,2001,29(9):1469-1473.
    [60]. 朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社,1992:464-486.
    [61]. 张金波,宋长春.土壤氮素转化研究进展[J].吉林农业科学,2004,29(1):38-43.
    [62]. 张金波,宋长春,杨文燕.三江平原土地耕作对土壤氮矿化势和硝化势的影响[J].土壤通报,2005,36(1):137-139.
    [63]. 赵琳,李世清,李生秀,等.半干旱生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J].干旱地区农业研究,2004,22(4):14-20.
    [64]. 张承运.不同湿温度条件下土壤有机质和秸秆分解规律与模拟[D].北京:中国农业大学,2004:
    [65]. 郑金萍,郭忠玲,范春楠,等.长白山五种主要森林群落细根现存生物量研究[J].北华大学学报,2004,5(5):458-461.
    [66]. Aber JD.,Magill AM., Boone R. Plant and soil response to three years of chronic nitrogen additions at the hardwood forest[J]. Ecological Applications, 1993, 3(1):156-166.
    [67]. Adams MA., Attiwill PM. Nutrient cycling and nitrogen mineralization in eucalypt forests of south eastern Australia. I. Nutrient cycling and nitrogen turnover[J]. Plant Soil, 1986, 92(2):319-339.
    [68]. Burke IC.,Lauenroth WK., Parton WJ. Regional and Temporal cariation in met production and nitrogen mineraliztion in grasslands[J]. Ecology, 1997, 78:1330-1340.
    [69]. Brendse F. Organic matter accumulation and nitrogen mineralization during secondary succession in heath land ecosystems[J]. Journal of Ecology, 1990, 78(6):413-427.
    [70]. Bonilla D., Roda A. Soil nitrogen dynamics in a holm oak forest[J]. Vegetaio, 1992, 100: 247-257.
    [71]. Clough TJ., Jarvis SC., Hatch DJ. Relationships between soil thermal units, nitrogen mineralization and dry matter production in pastures[J]. Soil Vse Manage, 1998, 14:65-69.
    [72]. Coleman DC., Cole CV., Erson RV. Ananalysis of rhizosphere-saprophage interaction in terrestrial ecosystem. In:UL.Lohm, T. Persson, editors. Soil organisms as components of ecosystem. Ecological Bullet in Number 25 Stockholm, Sweden: Swedish National Research Council, 1977, 299-309.
    [73]. Curtin D., Campbell CA. Jalil A. Effects of acidity on mineralization: PH-dependence of organic matter mineralization in weakly acidic soils[J]. Soil Biology and Biochemistry, 1998, 30(4):57-64.
    [74]. Diaz-Ravina M., Acea MJ., Carballas T. Seasonal fluctuations in microbial populations andavailable nutrients in forest soil[J]. Biology Fertility of Soils, 1993, 16:205-210.
    [75]. Dalias P., Anderson JM., Bottner P., Couteaux MM. Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions[J]. Soil Biology and Biochemistry, 2002, 34(8):691-701.
    [76]. Ferris H., Venette RC., Meulen HR. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement[J]. Plant and Soil, 1998, 203(2):159-171.
    [77]. Garten CT. Nitrogen saturation and soil N availability in a high-elevation spruce and fir forest[J]. Water, Air and Soil Pollution, 2000, 120(1):295-313.
    [78]. Grundmann GL, Rossol RP., Bardin R. Differential effects of soil water content and temperature on nitrification and aeration[J]. Soil Science Society of America Journal, 1995, 59(7):1342-1349.
    [79]. Groffman PM., Eagan PS. Grass species and soil type effects on mierobial biomass and activity[J]. Plant and Soil, 1996, 183(1):61-67.
    [80]. Holmes WE., Zak DR. Soil microbial biomass dynamics and net nitrogen mineralization in northern hardwood ecosystems[J]. Soil Science Society of America Journal, 1994, 58(1):238-243.
    [81]. Holland EA., Detling JK. Plant response to herbivory and belowground nitrogen cycling[J]. Ecology, 1990, 71(6):1040-1049.
    [82]. Holland EA., Parton WJ., Detling JK. Physiological responses of plant populations to herbivory and their consequences for ecosysterm nutrient flow[J]. The American Naturalist, 1992, 140(8):685-706.
    [83]. Haynes RJ., Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biology and Biochemistry, 1999, 31(3):1821-1830.
    [84]. Hagedorn F., Steiner KG., Sekayange L., Zech W. Effects of rainfall pattern on nitrogen mineralization and leaching in green manuce experiment in South Rwanda[J]. Plant and Soil, 1997, 195(2):365-375.
    [85]. Ingested T. Plant Grow in Relation to Nitrogen Supply. In:Clark FE and Rosswall T.eds. Terrestrial Nitrogen Cycles[J]. Ecological Bulletins-NFR, Stockholm, 1981, 33(303):268-271.
    [86]. Ineson P., Taylor K., Harrison AF. Effects of climate change on nitrogen dynamics in upland soils Atrans plantapproach[J]. Global Change Biology, 1998, 4(1):143-152.
    [87]. Jenny H. Fcators of soil formation.[J] New York: MCGraw-hill,1938,253(9):89-93.
    [88]. Jennifer D.K., Wayne T.S. Using soil temperature and moisture to predict forest soil nitrogen mieralization[J]. Biology Fertility of Soils,2002,36(3):177-182.
    [89]. Koblerg RL., Rouppet B., Westfall DG. Evaluation of an in situ net soil nitrogen minerlization method in dryland agroecosystem[J]. Soil Science Society of America Journal, 1997, 61(3):504-508.
    [90]. Klemmedson JO. Nitrogen mineralization in limed and gypsum-amended substrates from arneliorated acid forest soils[J]. Soil Science, 1989, 147(1):55-63.
    [91]. Kusum M., Arunachalam A., Tripathi RS., Pandey HN. Nitrogen mineralization as influenced by climate, soil and vegetation in a subtropical humid forest in northeast India[J]. Forest Ecology and Management, 1998, 109(2):91-101.
    [92]. Liu Y., Muller RN. Above-ground net primary productivity and nitrogen mineralization in a mixed mesophytic forest of eastern kentuky[J]. Forest Ecology and Management, 1993,59(1):53-62.
    [93]. Laverman AM., Zoomer HR., Verseveld HW., Verhoef HA. Temporal and spatial variation of nitrogen transformations in a coniferous forest soil[J]. Soil Biology and Biochemisty, 2000, 32(1):1661-1670.
    [94]. Maag M., Vinther FP. Effect of temperature and water on gaseous emissions from soils treated with animal slurry[J]. Soil Science Society of America Journal, 1999, 63(6):858-865.
    [95]. Mario EB., Bob DP., Paul EN. Grazing intensity and ecosysterm processes in a northern mixed-grass prairie[J]. USA.Ecology Applications, 1998, 34(2):469-479.
    [96]. Maithani K., Arunachalam A., Tripathi RS., Pandey HN. Nitrogen mineralization as influenced by climate, soil and vegetation in a subtropical humid forest in northeast India[J]. Forest Ecology and Management, 1998, 109(3):91-101.
    [97]. Nicolardot B., Fauvet G., Cheneby D. Carbon and nitrogen cycling through soil microbial biomass at various temperatures[J]. Soil Biology and Biochemistry, 1994, 26(5):253-261.
    [98]. Nadelhoffer KJ., Aber JD., Melillo JM. Seasonal patterns of mmonium and nitrate uptake in nine temperate forest ecosysterms[J]. Plant and Soil, 1984, 80(3):321-335.
    [99]. Ohrui K., Mitchell MJ., Bischoff JM. Effect of landscape position on N mineralization and nitrification in a forested watershed in the Adirondack Mountains of New York[J]. Can.For.Res., 1999,29(4):497-508.
    [100]. Puri G, Ashman MR. Relationship between soil microbial biomass and gross N mineralization[J]. Soil Biology and Biochemistry, 1998, 30(2):251-256.
    [101]. Patra AK., Jarvis SC., Hatch DJ. Nitrogen mineralization in soil layers, soil paricles and macro-organic matter under grassland[J]. Biology Fertility of Soils ,1999,29(4):38-45.
    [102]. Peter B., Reich DWP., David A. Fire and vegetation effect on productivity and nitrogen cycling across a forest-grasslan continuum[J]. Ecology, 2001, 82(6):1703-1719.
    [103]. Paul KI., Black AS., Conyers MK. Development of nitrogen mineralization gradiens through surface soil depth and their influence on surface soil PH[J]. Plant and Soil, 2001, 234(2):239-246.
    [104]. Rovira P., Vallejo VR. Organic carbon and nitrogen mineralization under Meciterranean climatic conditions: the effects of in incubation depth[J]. Soil Biology and Biochemistry, 1997, 29(9-10):1509-1520.
    [105]. Reich PB., David F., Grigal J. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on divesse soils[J]. Ecology, 1997, 72(2):335-347.
    [106]. Rasion RJ., Connell MJ., Khanna PK. Methodology for studing fluxes of soil mineral N in situ[J]. Soil Biology and Biochemistry, 1987, 19(4):521-530.
    [107]. Stanford G, Smith SJ. Nitrogen mineralization potentials of soils[J]. Soil Science America Proceedings, 1972, 36(3):465-472.
    [108]. Stark JM., Firestone MK. Kinetic characteristics of ammoniumoxidizer communities in a California oak woodland-annual grassland[J]. Soil Biology and Biochermistry, 1996, 28(5):1307-1317.
    [109]. Shaw MR., Harte J. Control of litter decompostition in a subalpine meadow-sagebrush steppe ecotone under climate change[J]. Ecological Applications, 2001, 11(4):1206-1223.
    [110]. Strader RH., Binkley D., Wells CG. Nitrogen mineralization in high elevation forests of the appalachians I. Regional patterns in southern spruce-fir forests[J]. Biogeochemistry, 1989, 7(3):131-145.
    [111]. Sierra J., Nitrogen mineralization and nitrification in a tropical soil: effects of fluctuating temperature conditions[J]. Soil Biology and Biochemistry, 2002, 34(4):1219-1226.
    [112]. Tilman D. Productivity and sustainability influenced by bio-diversity in grassland ecosystem[J]. Nature, 1996, 379(65-67):718-720.
    [113]. Wong MTF., Nortcliff S. Seasonal fluctuations of native available N and soil management implications[J]. Fertility Research, 1995, 42(3):13-26.
    [114]. Warning SA and Bremner JM. Ammonium production in soil under water logged conditions as an index of nitrogen avalibility. Nature, 1964a,20(2):951-952.
    [115]. Warning SA and Bremner JM. Effect of soil meshsize on the estimation of mineralizable nitrogen in soils. Nature, 1964b, 202(1):1141-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700