用户名: 密码: 验证码:
功能纤维的稀土富集性能及其在ICP光谱分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综述了国内外对稀土元素分离富集方法的现状及进展。根据离子交换纤维分子结构中所含的特殊功能基团,在合适的条件下能选择性地吸附某些金属离子,使它们与其它元素的离子实现分离的特性,并结合电感耦合等离子体原子发射光谱法(ICP-AES)的应用,研究了聚丙烯(PP)基强酸性阳离子交换纤维、聚丙烯(PP)基弱酸性阳离子交换纤维和聚丙烯腈(PAN)两性离子交换纤维作为离子交换剂,分离富集各种基体中的痕量La、Nd、Eu、Gd、Er和Yb等稀土元素。
     1研究了聚丙烯(PP)基强酸性阳离子交换纤维富集稀土元素的条件。pH=3的含稀土待富集液,在上柱流速小于14 mL·min~(-1)时,稀土元素被定量富集。其平衡吸附量分别为La 130 mg·g~(-1),Nd 142 mg·g~(-1),Eu 122 mg·g~(-1),Gd 151 mg·g~(-1),Er 104 mg·g~(-1),Yb 134 mg·g~(-1)。用10 mL 2.5 mol·L~(-1)的HNO_3可将被吸附的稀土完全洗脱。在洗脱前用0.5 mol·L~(-1)HNO_3预淋洗,可将大部分K、Na、Mg、Ca、Ba、Cu、Zn、Fe和Al等共存元素除去,而不影响稀土元素的回收率。该方法检出限为La 0.016 ng·mL~(-1),Nd 0.051 ng·mL~(-1),Eu0.006 ng·mL~(-1),Gd 0.029 ng·mL~(-1),Er 0.048 ng·mL~(-1),Yb 0.006 ng·mL~(-1),回收率为94.5%~103%,RSD 0.7%~5.2%。测定了水样,人工合成样,国家标准物质GSD-11及柑桔叶中的稀土元素,得到满意的结果。
     2研究了聚丙烯(PP)基弱酸性阳离子交换纤维富集稀土元素的条件。pH=5的含稀土待富集液,在上柱流速小于10 mL·min~(-1)时,稀土元素被定量富集。其平衡吸附量分别为La 86.5 mg·g~(-1),Nd 98.2 mg·g~(-1),Eu 98.7 mg·g~(-1),Gd 99.2 mg·g~(-1),Er 84.9 mg·g~(-1),Yb 91.5 mg·g~(-1)。用10 mL 1.0 mol·L~(-1)的HCl能很好地洗脱交换柱上的痕量稀土元素。该法能很好地富集水样,人工合成锌,钠和钡等基体样品中的痕量稀土。该方法检出限为La 0.015 ng·mL~(-1),Nd 0.039 ng·mL~(-1),Eu 0.0090 ng·mL~(-1),Gd 0.030 ng·mL~(-1),Er 0.015 ng·mL~(-1),Yb 0.0090 ng·mL~(-1),回收率为91.8%~103%,RSD 0.3%~5.6%。
     3研究了聚丙烯腈(PAN)两性离子交换纤维富集痕量稀土元素的条件。pH=5含稀土待富集液,在上柱流速小于8 mL·min~(-1)时,稀土元素被定量富集。其平衡吸附量分别为La 7.32 mg·g~(-1),Nd 7.61 mg·g~(-1),Eu 8.04 mg·g~(-1),Gd 7.95 mg·g~(-1),Er 9.12 mg·g~(-1),Yb 8.49 mg·g~(-1)。用10 mL 1.5 mol·L~(-1)的HNO_3能很好地洗脱交换柱上的痕量稀土元素。该法能很好地富集水样,人工合成锌,铜和钠等基体样品中的痕量稀土。该方法检出限为La 0.032 ng·mL~(-1),Nd 0.068 ng·mL~(-1),Eu 0.033 ng·mL~(-1),Gd 0.053 ng·mL~(-1),Er 0.045 ng·mL~(-1),Yb 0.019 ng·mL~(-1),回收率为90.0%~101%,RSD为0.4%~5.3%。
In this paper,the current situation and progress on the methods of separation and enrichment of rare earth elements at home and abroad were reviewed.Based on the characteristic of absorption of some metal ion for separation from other ions under certain conditions by special functional groups in the molecule of exchange fiber,the separation and enrichment of trace rare earth elements La、Nd、Eu、Gd、Er and Yb from various matrix were investigated using polypropylene based strong acidic cation ion exchange fiber, polypropylene based weak acidic cation exchange fiber,and polyacrylonitrile based amphoteric ion exchange fiber respectively with ICP-AES.
     1 A method of enrich trace rare earth elements by polypropylene based strong acid cation ion exchange fiber was studied.The conditions of enrichment and eluent were optimized.When the pH of pregnant solution was 3,rare earth elements was enriched quantitatively at the flow rate within 14 mL·min~(-1).Then it was desorbed from the column completely by 10 mL 2.5 mol·L~(-1)HNO_3.The adsorption capacity were La 130 mg·g~(-1),Nd 142 mg·g~(-1),Eu 122 mg·g~(-1),Gd 151 mg·g~(-1),Er 104 mg·g~(-1),Yb 134 mg·g~(-1).The coexisting elements of K,Na,Mg,Ca, Ba,Cu,Zn,Fe and Al could be removed by pre-eluting with 0.5 mol·L~(-1)HNO_3. The detection limit of the method was La 0.016 ng·mL~(-1),Nd 0.051 ng·mL~(-1),Eu 0.006 ng·mL~(-1),Gd 0.029 ng·mL~(-1),Er 0.048 ng·mL~(-1),Yb 0.006 ng·mL~(-1),the recovery was in the range of 94.5%~103%,and the RSD was between 0.7%~5.2 %.The method was validated by the determination of trace rare earth elements in water,artificial samples,orange leaf,and GSD-11 samples.
     2 A method of enrich trace rare earth elements by polypropylene based weak acid cation ion exchange fiber was studied.The conditions of enrichment and eluent were optimized.When the pH of pregnant solution was 5,rare earth elements was enriched quantitatively at the flow rate within 10 mL·min~(-1).Then it was desorbed from the column completely by 10 mL 1.0 mol·L~(-1)HCl.The adsorption capacity were La 86.5 mg·g~(-1),Nd 98.2 mg·g~(-1),Eu 98.7 mg·g~(-1),Gd 99.2 mg·g~(-1),Er 84.9 mg·g~(-1),Yb 91.5 mg·g~(-1).The detection limit of the method was La 0.015 ng·mL~(-1),Nd 0.039 ng·mL~(-1),Eu 0.0090 ng·mL~(-1),Gd 0.030 ng·mL~(-1), Er 0.015 ng·mL~(-1),Yb 0.0090 ng·mL~(-1),the recovery was in the range of 91.8%-103%,and the RSD was between 0.3%~5.6%.The method was validated by the determination of trace rare earth elements in water and artificial samples.
     3 A method of enrich trace rare earth elements by polyacrylonitrile based amphoteric ion exchange fiber was studied.The conditions of enrichment and eluent were optimized.When the pH of pregnant solution was 5,rare earth elements was enriched quantitatively at the flow rate within 8 mL·min~(-1).Then it was desorbed from the column completely by 10 mL 1.5 mol·L~(-1)HNO_3.The adsorption capacity were La 7.32 mg·g~(-1),Nd 7.61 mg·g~(-1),Eu 8.04 mg·g~(-1),Gd 7.95 mg·g~(-1),Er 9.12 mg·g~(-1),Yb 8.49 mg·g~(-1).The detection limit of the method was La 0.032 ng·mL~(-1),Nd 0.068 ng·mL~(-1),Eu 0.033 ng·mL~(-1),Gd 0.053 ng·mL~(-1), Er 0.045 ng·mL~(-1),Yb 0.019 ng·mL~(-1),the recovery was in the range of 90.0%~101%,and the RSD was between 0.4%~5.3%.The method was validated by the determination of trace rare earth elements in water and artificial samples.
引文
[1]李洁,张哲夫.稀土功能材料现状与分析[J].稀有金属与硬质合金,2002,30(1):42-45
    [2]吴波英,黄少文.ICP-AES在稀土元素分析中的抗干扰技术的应用及进展[J].稀土,2005,26(5):17-22
    [3]辛仁轩.高纯钍中微量总稀土的光度测定[J].光谱实验室,1993,10(2):35-38
    [4]Miranda J P,Zinner L B.Separation of samarium and gadolinium solutions by solvent extraction[J].Journal of Alloys and Compounds,1997,249:116-118
    [5]Jia Q,Wang Z H,Li D Q.Adsorption of heavy rare earth(Ⅲ)with extraction resin containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid[J].Journal of Alloys and Compounds,2004,374:434-437
    [6]李明玉,刘兴荣,张秀娟.液膜分离稀土的现状[J].稀土,1994,15(3):45-49
    [7]Sana K S,Aycicek A.Separation and determination of rare earth elements by Dowex2-X8resin using sodium trimetaphosphate as elution agent[J].Journal of Chromatography A,2000,874:311-317
    [8]申治国,钟广涛,孔聘颜.用草酸钙共沉淀法分离富集骨中稀土元素[J].分析测试学报,1999,18(4):20-22
    [9]刘庆惠,陈远盘.化学富集XRFA法测定岩石、土壤中稀有和稀土元素[J].光谱学与光谱分析,1995,15(6):99-105
    [10]陈若仙,郑建玉,杨建梅.氢氧化物共沉淀分离—分光光度法测定离子吸附型矿的稀土总量[J].稀有金属与硬质合金,1997,128:44-48
    [11]李云春,弓振斌,李俊.河口水体中痕量稀土元素的共沉淀预富集—电感耦合等离子体质谱法测定研究[J].分析测试学报,2005,24(1):12-16
    [12]王英滨.ICP-AES法测定地质样品中15个稀土元素及钪[J].地质实验室,1995,11(2):73-76
    [13]曹心德,赵贵文,查立新.沉淀分离富集.电感耦合等离子原子发射光谱测定土壤中可溶态稀土元素[J].环境科学,1998,2(9):66-70
    [14]涂星,廖列文.稀土元素的分离富集技术[J].贵州化工,2003,28(3):3-5
    [15]陈建国,江祖成,孔令英.TBP萃取-ICP-AES法测定高纯La2O3中的痕量稀土杂质 [J].中国稀土学报,1992,10(1):89-91
    [16]Satyanarayana K,Smeer D,Ramanaiah G V.Determination of scandium in geological materials,rare earth minerals and niobate/tantalate-type of samples by inductively coupled plasma atomic emission spectrometry after solvent extraction/acid hydrolysis separation[J].Analytica Chimica Acta,1998,376:273-281
    [17]孙峻梅,李刚,廖振环.溶剂萃取分离—电感耦合等离子体原子发射同时测定茶叶中微量稀土元素[J].分析化学,1992,20(2):242
    [18]辛仁轩,庄永能,董仁杰.异烷基磷酸(1—甲基—庚基)酯萃淋树脂分离—感耦等离子体光谱法测定氧化铕中微量稀土元素[J].岩矿测试,1996,15(3):203-206
    [19]Zhang X Q,Liu J L,Yi Y.Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation[J].International Journal of Mass Spectrometry,2007,260:57-66
    [20]Carolina H G,Alberto J Q C,Marta F D.Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry(ICP-MS)[J].Talanta,2005,68:47-53
    [21]文献,喻庆华,马荣骏.液膜萃取在稀土提取中的应用[J].稀有金属与硬质合金,1993,113:41-44
    [22]Liu X G,Zhang X G.Simplified model for extraction of rare-earth ions using emulsion liquid membrane[J].Journal of Membrane Science,1997,128:223-229
    [23]Yaftian M R,Burgard M,Dieleman C B.Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix[4]arene[J].Journal of Membrane Science,1998,144:57-64
    [24]Yang X J,Gu Z M,Fane A G.Multicomponent separation by a combined extraction/electrostatic pseudo-liquid membrane(Ⅱ):extraction and group separation of rare earths from simulated rare earth ore leach solutions[J].Hydrometallurgy,1999,53:19-29
    [25]文献,喻庆华,马荣骏.用液膜从稀土浸出液中提取稀土的研究[J].矿冶工程,1997,17(3):47-50
    [26]李永涛,徐书绅.液膜富集技术与分光光度法测定痕量稀土[J].中国稀土学报,1989,7(4):80-83
    [27]黄慧萍,李艳玲,陶德刚.电感耦合等离子体质谱法测定铬铁矿单矿物中痕量稀土 元素[J].冶金分析,2005,25(6):42
    [28]姜永青,李金英,郭冬发.增压排空阴离子交换法分离-ICP-MS测定铀基体中痕量稀土[J].核化学与放射化学,2004,26(2):118-121
    [29]Turker P,Ahmet E E,Talal S.Preconcentration and atomic spectrometric determination of rare earth elements(REEs)in natural water samples by inductively coupled plasma atomic emission spectrometry[J].Analytica Chimica Acta,2005,547:42-49
    [30]Irma E D V,Adriana N M,Roberto A O.Determination of trace rare earth elements by X-ray fluorescence spectrometry after preconcentration on a new chelating resin loaded with thorin[J].Talanta,1999,49:929-935
    [31]Zhu Y B,Akihide I,Eiji F.Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn[J].Journal of Alloys and Compounds,2006,408-412:985-988
    [32]Liu R X,Guo J L,Tang H X.Adsorption of fluoride,phosphate,and arsenateions on a new type of ion exchange fiber[J].Journal of Colloid and Interface Science,2002,248(2):268-274
    [33]Stella L,Bernard S,Jeanclaude B.Performance of ion exchanger grafted fibers for industrial water treatment in dynamic reactors[J].Water Reseach,2004,38:4045-4054
    [34]Amounas M,Magne V,Innocent C.Elaboration and chemical reactivity of enzyme modified ion exchanging textiles[J].Enzyme and Microbial Tec,2002,3:1171-1178
    [35]林昆华,胡书晖.偕胺肟螯合纤维的合成及对矿液中金的吸附性能研究[J].化学研究与应用,2003,15(5):18-23
    [36]李一,于冬宏,刘正等.多功能基离子交换纤维的合成及其对贵金属吸附性能研究[J].冶金分析,2002,22(5):124-128
    [37]Vuorio M,Manzanares J A,Murtomaki L,et al.Ion-exchange fibers and drugs:a transient study[J].Journal of controlled Release,2003,91(3):439-448
    [38]Kankkunen T,Huupponen I,Lahtinen K,et al.Improved stability and release control of levodopa and metaraminol using ion-exchange fibers and transdermal iontophoresis[J].European Journal of Pharmaceutical Sciences,2002,16(4):273-280
    [39]原思国,兰淑琴等.离子交换纤维的应用与展望[J].河南化工,1997,(10):8-9
    [40]辛文达,陈励权,董长发.阳离子交换纤维分离稀土的研究:I主要分离条件的研究[J].兰州大学学报(自然科学版),1993,28(3):64-69
    [41]陆耕,汤丽鸳,曾汉民.强酸型阳离子交换纤维对稀土和过渡金属离子的交换性能 研究[J].离子交换与吸附,1993,9(5):433-438
    [42]郭伊荇,赵晓亮,刘春明.氨基羧酸纤维分离富集—电感耦合等离子体原子发射光谱法测定多种痕量稀土元素[J].分析化学研究简报,1996,24(3):341-343
    [43]Wang Z H,Yan X P,Wang Z P.Flow injection on-Line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of(ultra)trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent[J].J Am Soc Mass Spectrom,2006,17:1258-1264
    [44]Pedreira W R,Sarkis J E S,Rodrigues C.Determination of trace amounts of rare earth elements in high pure lanthanum oxide by sector field inductively coupled plasma mass spectrometry(HR ICP-MS)and high-performance liquid chromatography(HPLC)techniques[J].Journal of Alloys and Compounds,2002,344:17-20
    [45]Pedreira W R,Sarkis J E S,Silva Q C A.Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry(ICP-SFMS)and high-performance liquid chromatography(HPLC)techniques[J].Journal of Solid State Chemistry,2003,171:3-6
    [46]Pedreiraa W R,Sarkisb J E S,Rodriguesb C.Determination of trace amounts of rare earth elements in highly pure praseodymium oxide by double focusing inductively coupled plasma mass spectrometry and high-performance liquid chromatography[J].Journal of Alloys and Compounds,2001,323-324:49-52
    [47]Pedreira E R,Queiroz C A,Abrao A.Trace amounts of rare earth elements in high purity samarium oxide by sector field inductively coupled plasma mass spectrometry after separation by HPLC[J].Journal of Alloys and Compounds,2006,418:247-250
    [48]Nevin O Z,Bedia E F.Separation and direct UV detection of lanthanides complexed with cupferron by capillary electrophoresis[J].Journal of Chromatography A,2000,895:263-268
    [49]Liu B F,Liu L B,Cheng J K.Separation and determination of thorium,uranium and mixed rare-earth elements as their UV:Vis absorbing complexes by capillary zone electrophoresis[J].Talanta,1998,47:291-299
    [50]李凯,曾庆轩,李明愉.强酸性阳离子交换纤维的制备及磺化和其吸附性能研究[J].精细石油化工进展,2004,5(10):38
    [51]杜慷慨,庄建平,郑文奇.聚丙烯离子交换纤维研究[J].塑料工业,2003,31(4):35-38
    [52]王惠君,施林妹.D113树脂对镝的吸附及机理[J].浙江海洋学院学报,2004,27(3):228
    [53]周志瑞,庄向平,徐宏亮.二甲酚橙螯合形成树脂特征的研究[J].分析化学,1983,11(11):808-812
    [54]杜秀英,陆耘,符若文等.聚丙烯基弱酸型阳离子交换纤维的制备及力学性能[J].合成纤维工业,1998,22(4):14-17
    [55]王金涛,原思国,赵林等.羧酸型离子交换纤维的制备与性能[J].合成纤维工业,2001,24(6):13-17
    [56]吴惠明,徐敏,杜秀英.弱酸型阳离子交换纤维PVF-g-AA的制备[J].广州大学学报(自然科学版),2003,2(4):327-329
    [57]陆耕,张柱,曾汉民.弱酸性阳离子交换纤维聚丙烯纤维接枝聚丙烯酸共双丙烯酸二甘醇酯交换吸附性能的研究I与过渡金属离子的作用[J].离子交换与吸附,1992,8(2):117-122
    [58]王金涛,李保,梁志宏.羧酸型阳离子交换纤维对过渡金属离子的吸附性能研究[J].河南化工,2002,9:8-10
    [59]马建标,李晨曦.功能高分子材料[M].北京:化学工业出版社,2000
    [60]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995
    [61]陆耕等.Co60-γ射线预辐照引发烯类单体接枝共聚制备两性离子交换纤维的研究[J].中国化学会第九届反应性高分子学术讨论会论文预印集,厦门,1995:87
    [62]符若文,王菲,李日强.强酸弱碱型两性离子交换纤维的制备Ⅱ磺化及吸附性能研究[J].环境技术,2002,6:15-21
    [63]符若文,张春霞,许家瑞.含羧基和吡啶基两性离子交换纤维的交换吸附性能研究[J].环境技术,2003,1:22-25
    [64]Soldatov V S,Shttnkevich A A,Scrgeev G I.Synthesis,structure and properties of new fibrous ion exhangers[J].Reactive Polymer,1988,7:159-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700