用户名: 密码: 验证码:
化学镀法制备钼铜复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、俄歇电子分析(AES)和X射线光电子分析(XPS)等分析手段研究了钼粉表面化学镀铜方法及钼铜复合粉的烧结工艺。深入探讨了化学镀铜液组成及施镀工艺条件对钼粉表面化学镀铜的影响,并对钼粉表面化学镀铜的反应机理及铜在钼粉表面的生长情况进行了研究。此外,对银催化化学镀法制备钼铜复合粉体的改良工艺及银催化钼粉表面化学镀铜的工艺机理进行了研究。最后初步探讨了钼铜复合粉的烧结工艺。论文得出如下结论:
     (1)化学镀铜前的预处理可以使钼粉具有较好的分散性和催化活性。合理的化学镀液组成和施镀工艺可以获得铜含量为15%~85%(wt.%)的钼铜复合粉体,反应速度快,粉末分散,铜镀层均匀,但表面粗糙。钼粉表面化学镀铜工艺为:TEA和EDTA为络合剂,聚乙二醇和2,2'-联吡啶为双稳定剂,pH值:12~13,温度:50~55℃,甲醛:24~28ml/L,硫酸铜:15g/L与络合剂含量摩尔比为1:5,超声波和磁力搅拌。
     (2)得出了钼粉表面化学镀铜的反应机理。预处理过程中,利用SnCl_2(敏化剂)将PdCl_2(活化剂)还原成Pd~0原子簇沉积在钼粉表面,pd~0原子簇将作为化学镀铜的催化核心,使反应继续进行。化学镀铜过程中小的Pd原子簇尺寸造成Pd结合能的正偏移并估算出了Pd原子簇的尺寸为3~4nm;结合化学镀铜反应机理和化学镀铜过程不同阶段钼粉表面的形貌分析,提出了铜在钼粉表生长的“扩散—缩小自催化沉积”模型。
     (3)Ag原子簇可以作为化学镀铜过程的催化核心,成功地制备出铜包钼的钼铜复合粉体;探讨了银催化钼粉表面化学镀铜的工艺机理,H_2PO_2~-将敏化处理后粘附在钼粉表面的银氨还原成Ag原子簇沉积在钼粉表面,Ag原子簇作为化学镀铜的催化核心,使铜沉积在钼粉表面。
     (4)钼铜复合粉末经过350℃/60min的氢气还原处理可以有效提高烧结体的最终致密度;用化学镀方法制备的钼铜复合粉体成形性好,生坯相对密度可以达到87%,但是成形压力较大,达到1600MPa。
     (5)探讨了钼铜复合粉压坯的液相烧结和固相烧结方法。液相烧结(1200℃/2h)制备出的烧结体表面有铜渗出、坍塌等现象,不是制备钼铜复合材料的理想方法。对固相烧结制备出的烧结体进行了致密度、电导率、热导率、热膨胀系数和硬度的检测。结果表明,由于化学镀铜法制备的钼铜复合粉特殊的结构,使钼铜复合粉压坯在低于铜熔点温度下进行固相烧结,即能得到良好的性能。
In the investigation, the method of copper coating on the surface of the molybdenum powders with the electroless plating and technique of Mo/Cu composite powders sintering were studied with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microcopy (TEM), auger electron spectrometer (AES) and X-ray photoelectron spectrometer (XPS). The influence of solution composition and plating conditions on electroless copper plating was studied. The reaction mechanism of electroless copper coating of molybdenum powders and the growth mechanism of copper growth on the surface of the molybdenum powders were suggested. Besides, the electroless deposition of copper on the surface of molybdenum powders by using silver as catalyst was investigated and the possible mechanism of electroless copper coating of molybdenum by using silver as catalyst was proposed. Finally, the technique of Mo/Cu composite powders sintering was researched primarily. The results are as follows:
     (1) Through pretreatment before electroless copper plating, the Molybdenum powders had better dispersity and catalytic activity. Through rational solution composition and plating conditions, Mo/Cu composite powders with a range content of copper from 15~85wt.% can be successfully obtained. The coating rate was fast and the composite powders with continuous lay of copper but rough surface were dispersive. The plating technique was that TEA and EDTA as complex agents, the 2, 2'-bipyridyl and PEG as double stabilizers, pH value 12~13, temperature 50~55℃, formaldehyde 24~28ml/L, metal salt 15g/L, whose mole ratio to the complex agent content was 1:5, ultrasonic and magntic stiring.
     (2) The reaction mechanism of electroless copper coating was mainly studied with the help of XPS, which shows the reduction PdCl_2 (activator) catalyst on the surface of molybdenum powders by SnCl_2 (sensitizer) to produce pure Pd~0 clusters, which subsequently act as nucleation sites for copper depositon. The concept of XPS core-level binding energy(BE) shift due to small cluster size was utilized to predict the size of pure Pd~0 clusters deposited on the surface of molybdenum powders, which were about 3~4 nm. Combination the reaction mechanism of electroless copper coating and the morphologies of the copper coated powders at the different stages in this experiment, the diffusion-shrinkage autocatalytic model was supposed for the growth mechanism over the surface.
     (3) The metallic Ag~0 clusters acted as nucleation sites for the copper deposition and the copper coated molybdenum composite powders can be acquired successfully. With the analysis of XPS, the reaction mechanism of electroless copper coating of molybdenum powders as Ag catalysis was suggested. After the sensitization step, the reducing agent(H_2PO_2~-) in the bath immediately reduced the [Ag(NH_3)_2]~+ ions adsorbed on the molybdenum to the metallic Ag~0 clusters which subsequently act as nucleation sites for copper depositon.
     (4) The Mo/Cu composite powders were reducing treated for 60min at 350℃, which can improve the final densification of the compact. The Mo/Cu composite powders had good formability. The green compact of the relative density can reached up to 87%, however it needed higher forming pressure.
     (5) The preparation of Mo/Cu composite materials with liquid sintering and solid sintering methods was discussed, respectively. The liquid sintering method was not ideal way to fabricate the Mo/Cu composite materials, because after liquid sintering the phenomena of copper exudation and collapse were observed. After Mo/Cu green compacts were sintered to composite materials at temperature that was lower than the melting point of copper. The conductivity, heat conductivity, heat expansion coefficient and rigid were detected. The results showed that properties composites materials were excellent due to the special structure of Mo/Cu composite powders.
引文
[1]林小芹,贺跃辉,王政等.钼粉的制备技术及其进展.中国钼业,2003,27(1):39-42
    [2]李晓红,胡淑文,解子章等.液相烧结Mo-Cu合金的研究.新技术新工艺,1996,(1):35-36
    [3]张德尧,吴晓惠.Mo-Cu材料的制作.中国钼业,2001,25(4):38-39
    [4]李云平,曲选辉,段柏华.W-Cu(Mo-Cu)复合材料的最新研究状况.硬质合金,2001,18(4):232-236
    [5]吕大铭.钼铜材料的开发和应用.粉末冶金工业,2000,10(6):30-33
    [6]李云平,曲选辉,段柏华.W-Cu(Mo-Cu)复合材料的研究进展.粉末冶金材料科学与工程,2002,7(1):18-23
    [7]谭树松.有色金属材料学.北京:冶金工业出版社,1993.22-52
    [8]白淑文,张胜华,钨钼丝加工原理.北京:轻工业出版社,1983.7
    [9]吕大铭.粉末冶金钨钼材料发展的国内外近况.粉末冶金工业,1997,7(3)::40-43
    [10]American Society for Metals.Binary alloy phase diagrams.1986,1:935
    [11]牟科强,邝用庚.Mo-Cu材料的性能和应用.金属功能材料,2002,9(3):26-29
    [12]Maneshian M H,Simchi A,Razavi H Z.Structural changes during synthesizing of nanostructured W-20wt%Cu composite powder by mechanical alloying.Materials Science and Engineering A,2007,(445-446):86-93
    [13]Alam S N.Synthesis and characterization of W-Cu nanocomposites developed by mechanical alloying.Materials Science and Engineering A,2006(433):161-168
    [14]Raghu T,Sundaresan R,Ramakrishnan P,et al.Synthesis of nancrystalline copper-tungsten alloy by mechanical alloying.Material Science and Engineering A,2001,A304-306,438-441
    [15]Ryu S S,Kim Y D,MooN I H.Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying.Journal of Alloys and Compouds,2002,335(1-2):233-240
    [16]Dae G K,Back H L,Sung T O,et al.Mechanochemical process for W-15wt%Cu nanocomposite powders with WO_3-CuO powder mixture and its sintering characteristics.Materials Science and Engineering A,2005,(395):333-37
    [17]Lee G G,Ha G H,Kim B K.Synthesis of high density ultra-fine W-Cu Composite alloy by mechano-thermochemical process.Powder Metallurgy,2000, 43(1):79-82
    [18]李云平,曲选辉,郑洲顺等.热机械法制备超细弥散分布钨铜复合粉末.粉末冶金技术,2004,22(5):266-269
    [19]Sebastian K V,Tendolkar G S.High density tungsten-copper liquid phase sintered composites from coreduced oxide powders.Int J Powder Metall Powder Technol,1979,15(1):45-53
    [20]牟科强.氧化物共还原制取W-Cu和Mo-Cu复合材料的研究.粉末冶金工业,2004,14(5):13-16
    [21]刘珍,梁伟等.纳米晶材料制备方法及其研究进展.材料科学与工艺,2000,8(3):103-108
    [22]Srikanth R,David L B.Synthesis and evaluation of advanced nanocrystalline tungsten-based materials.P/M Science&Technology Briefs,1999,(1):9-14
    [23]范景莲,汪登龙,黄伯云等.难熔钨基合金的研究开发及其产业化方向.有色冶炼,2002,12(4):12-15
    [24]杨明川,宋贞祯,卢柯.W-20%Cu纳米复合粉的制备.金属学报,2004,40(6):39-642
    [25]Cheng J G,Lei C P,Xiong E T,et al.Preparation and characterization of W -Cu nanopowders by a homogeneous precipitation process.Journal of Alloys and Compounds,2006,(421):146-150
    [26]李在元,田鹜.化学共沉淀-封闭循环氢还原法制备纳米Mo-Cu复合粉体.有色金属,2004,56(3),15-17
    [27]梁淑华,范志康,胡锐.电弧熔炼法制造铜铬系触头材料的组织与性能.特种铸造及有色冶金,2000,4:25-29
    [28]雷纯鹏,程继贵,夏永红.新型钨铜复合材料的制备和性能研究的新进展.金属功能材料,2003,10(4):24-27
    [29]范景莲,刘涛,成会朝.难熔钨合金与硬质合金的研究新动向[J].中国钨业,2005,20(3):17-20.
    [30]吴小刚,架道成,杨林.钨铜与纳米钨铜复合材料的发展现状.中国钨业,2006,25(1):8-11
    [31]黄培云主编.粉末冶金原理.北京:冶金工业出版社,1981.
    [32]邹惠兰.钨基重合金的研究与应用现状.湖南冶金,1997,2:60-65
    [33]李云平,曲选辉,郑洲顺等.注射成形W-Cu研究现状及产业化发展趋势.粉末冶金技术,2003,21(2):108-110
    [34]Bildstein H,Eck R,Proceedings of thel3th international plansee seminar.Metallwerk Plansee,1993,17-25
    [35]郭庚辰主编.液相烧结粉末冶金材料.北京:化学工业出版社,2003.
    [36]LiY P,Qu X,Zheng Z S,et al.Properties of W-Cu composite powder produced by a thermo-mechanical method.International Journal of Refractory Metals&Hard Materials,2003,(21):259-264
    [37]杨林,架道成,吴小刚.热压烧结法制备W-Cu复合材料的研究.西华大学学报,2005,24(6):98-104
    [38]Hwang K S,Huang H S.The liquid phase sintering of molybdenum with Ni and Cu additions.Materials Chemistry and Physics,2001,67:92-100
    [39]果世驹编著.粉末冶金烧结理论.北京:冶金工业出版社,1998.
    [40]吉洪亮,堵永国,张为军.W-Cu、Mo-Cu合金的致密化技术.电工材料,2001,3:13-17
    [41]Gusmano G,Bianco A,Polini R,et al.Chemical synthesis and sintering behavior of highly dispersed W-Cu composite powders.Journal of Material Science,2001,30:901-907
    [42]Cheryl A D.Electroless copper plating A review:Part Ⅱ.Plating and surface Finshing,1995,(2):48-53
    [43]李宁.化学镀实用技术.北京:化学工业出版社,2004
    [44]金鸿,陈森.印制电路技术.北京:化学工业出版社,2003
    [45]陈宏达.印制电路孔金属化.电子工艺技术,2001,22(3):102-105
    [46]Machinare S,Koichi K.Electroless copper plating using Fe~Ⅱ as a reducing agent.ElectrochemActa,2004,49:233-238
    [47]程良.塑料电镀工艺技术.电镀与环保,2001,21(5):14-16
    [48]李玉酮,李建设.Ag包复WC粉末触头材料的组织与性能.材料研究学报,1995,9(5):399-402
    [49]Nakada Y,Yamazaki M,Kimura T.Effect of ZrO_2 inclusions on the densification and microstructure development of Ag-matrix composites.J.of the Japan soc.of Powder &Powder Metallurgy,1997,44(11):P1043-1048
    [50]Xu L N,Zhou K C,Xu H F.Copper thin coating deposition on natural pollen particles.Applied Surface Science,2001,183:58-61
    [51]赵逸云,周骏,鲍慈光等.均匀设计法在Al_2O_3粉末超声波化学镀铜工艺中的应用.材料导报,2000,14(2):53-54
    [52]Chang H F,Saleque M A.Dependenee of seleetivity on the preparation method of copper/alpha-alumina catalysts in the dehydrogenation of cyelohexanol.Applied Catalysis A,1993,03(2):233-242
    [53]李玉酮,李建设.Ag包复WC/C粉末触头材料的组织与性能.材料研究学报.1995,9(5):399-402
    [54]Chang H Y,Lin J H,Lin S J.Processing copper and Silver matrix composites by electroless plating and hot pressing.Metallurgical and Materials Transactions A,1999,30(4):1119-1136
    [55]Xu L N,Zhou K C,Xu H G.Copper thin coating deposition on natural pollen particles.Applied Surface Science,2001,183:58-61
    [56]赵逸云,周骏,鲍慈光等.均匀设计法在Al_2O_3粉末超声波化学镀铜工艺中的应用.材料导报,2000,14(2):53-54
    [57]Chang H F,Saleque M A,Dependence of selectivity on the preparation method of copper/alpha-alumina catalysts in the dehydrogenation of cyclohexanol.Applied Catalysis A,1993,103(2):233-242
    [58]Shiau CY,Tsai J C.Cu/gamma-Al_2O_3 catalyst prepared by electroless method.J.of the Chinese Inst.of Chem.Eng.,1997,28(5):351-357
    [59]Chang H F,Lin W H.TPR study ofelectroless plated copper catalysts.Korean J.of Chem.Eng.,1998,15(5):559-562
    [60]Park B J,Park S J,Ryu S K.Removal of NO over copper supported on activated carbon prepared by electroless plating.J.of Colloid and Interface,1999,217(1):142-145
    [61]Shiau C Y,Tsai J C.Cu/SiO_2 catalyst prepared by electroless method.J.of Chem.Tech.and Biotech.,1998,73(4):414-420
    [62]Yu A S,Lee J Y.Modifications of synthetic graphite for secondary lithium- ion battery applications.J.of Power Sources,1999,82:187-191
    [63]Chang S Y,Lin S J.Fabrieation of SiC_w reinforced copper matrix composite by electroless copper plating.Scripta Materialia,1996,35(2):225-231
    [64]关长斌,孙丽君.化学镀铜对金刚石性能的影响.表面技术,1995,24(5):12-14
    [65]王文方,许少凡,应美芳等.镀铜石墨-铜基复合材料组织与性能研究.合肥工业大学学报,1999,22(1):35-38
    [66]阎逢元,李飞,刘维民等.铜包石墨填充PTFE基复合材料摩擦学性能的研究.摩擦学学报,1999,19(1):7-11
    [67]刘伯威,张金生.非金属颗粒镀铜及对烧结摩擦材料强度的影响.材料保护,2001,34(2):23-24
    [68]Peng X L.Preparation of nickel and copper coated fine tungsten powder.Materials Science and Engineering A,1999,262:1-8
    [69]Dai H B,Li H X,Wang F H.An altemative process for the preparation of Cu-coated mica composite powder.Surface and Coating Technology,2006,201:2859-2866
    [70]Kondo K,Amakusa S,Murakawa K,et al.Electroless copper plating solution and process for formation of copper film,U.S.Pat.5039338,1991-08-13
    [71]Bindar P,Roldan J M,Arbach G V.Mechanisms ofelectroless metal plating:Ⅱ.decomposition of formaldehyde.IBM J Res Dev,1984,28:679-683
    [72]Shu J,Grandjean B P A,Kaliaguine S.Effect of Cu(OH)_2 on electroless copper plating.Ind Eng Chem Res,1997,36:1632-1636
    [73]Shacham-Diamand Y,Dubin V,Angyl M.Electroless copper deposition for ULSI.Thin SolidFilms,1995,262:93-97
    [74]Atsuoka M,Yoshida Y,Iwakura C.The effects of aeration and accumulation of carbonate Ions on the mechanical properties of electroless copper coatings.J ElectrochemSoc,1995,142:87-190
    [75]范启义.化学镀法制各纳米Cu-Al203复合粉末的研究:[硕士学位论文].浙江:浙江大学,2003.
    [76]Molenaar A,Holdring M,Beek L V.Kinetics ofelectroless copper plating with EDTA as complexing agent for cupric ions.Plating,1974,238:61-69
    [77]Shumacher R,Pesek J J,Melroy O R.Kinetic anslysis of electroless deposition of copper.J Phys Chem.,1985,89:4338-4342
    [78]高叔轩,刘贵昌,张茹芝等.超声波化学镀的研究进展.表面技术,2004,33(2):1-3
    [79]Touueras F,Hihn J Y,et al.Electroless copper plating ofexpoxide plates in an ultrasonic field.Ultrasonic Chemistry,2001,8:285-290
    [80]辜敏,黄令,杨防祖等.搅拌条件下电流密度对Cu镀层的织构和表面形貌的影响.应用化学,2002,19(3):280-284
    [81]Lee W,Yang H J,Reucroft P J,et al.Dry patterning of copper films using an O_2plasma and hexafluoroacetylacetone.Thin Solid Films,2001,392:122-127
    [82]杨文彬,张冰杰,沈丹等.空心玻璃微珠表面化学镀Ni-P合金磁性涂层的研究.功能材料,2007,38(11):1856-1858
    [83]Shukla S,Seal S,Akesson J,etal.Study of mechanism of electroless copper plating of fly-ash cenosphere particles.Applied Surface Science,2001,181:35- 50
    [84]Meenan B J,Brown N M D,Wilson J W.Characterisation of a PdCl_2/SnCl_2 electroless plating catalyst system adsorbed on barium titanate-based electroactive ceramics.Applied Surface Science,1994,74:221-233
    [85]黄惠忠等.表面化学分析.上海:华东理工大学出版社,2001
    [86]徐坚,熊惟皓,曾爱香.银催化化学镀合金包覆空心粉末微珠分体的制备.稀有金属材料与工程,2007,36(1):141-144
    [87]Waterhouse G I N,Bowmaker G A,Metson J B.Oxidation ofa polycrystalline silver foil by reaction with ozone,2001,183:191-204
    [88]姜晓霞.化学镀理论及实践.北京:国防工业出版社,2000
    [89]王文芳,许少凡,凤仪应等.石墨表面镀铜对石墨-铜复合材料强度影响的研究.热加工工艺,1999,28(6):28-29
    [90]蔡一湘,刘伯武.钨铜复合材料致密化问题和方法.粉末冶金工业,1997,17(2):138-44
    [91]李在元.钨铜、钼铜纳米复合粉的制备:[博士学位论文].沈阳:东北大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700