用户名: 密码: 验证码:
碳纤维导电屏蔽纸的研制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会电气化的飞速发展,电子产品的种类、数量和电子元件的精密程度不断提高,电子元件所造成的电磁辐射、元件本身受外界电磁波干扰及电磁辐射人体危害等问题变得日益严峻。电磁辐射不仅直接影响电子产品的性能以及信息产业的健康有序发展,对人类及其它生物体造成严重伤害,而且还对国家政治、军事以及经济信息的安全带来极大的危害。因此,开发电磁屏蔽材料(特别是轻量化产品)具有十分重要的意义。
     碳纤维具有导电性能好、质量轻、价格比金属纤维低、易加工、耐氧化性能好等优点,因此是很有发展前景的电磁波屏蔽材料。本课题以碳纤维为原料来开发碳纤维导电屏蔽纸,以拓宽电磁屏蔽材料的研究领域和应用范围,并为研制高性能电磁屏蔽材料提供依据。
     本课题对碳纤维制备导电屏蔽纸的关键技术——分散工艺及抄造工艺进行了探讨,对纸页的力学性能、导电性能、屏蔽性能及其影响因素进行了系统研究,并对制造高性能导电屏蔽纸的可行性及方式进行了初步探讨。
     碳纤维的红外光谱、扫描电镜观察及化学滴定测定结果表明,碳纤维表面的活性基团数量少,纤维亲水性低,在水中的分散性很差,必须加入分散剂才能改善其分散性;经过浓硝酸氧化后,碳纤维表面产生更多的活性基团,表面产生刻蚀,表面积增大,纤维亲水性增加,因此碳纤维在水中的分散性及稳定性得到改善。
     在一定范围内增加碳纤维含量能够提高纸页的抗张强度、耐破度、撕裂度;超过这个范围会使这些力学性能急剧下降。碳纤维含量越高纸页的导电性越好;碳纤维含量一定,纸页体积电阻率一定,但阻值随定量的增加而减小,其变化规律符合物理导电模型。导电网络通路的搭接及接触电阻的大小对纸页的导电性有重要影响。在碳纤维含量较低时,适当增加碳纤维的长度能够提高纸页的导电性;碳纤维间接触得越紧密,接触电阻就越低,体积电阻率也越低。通过打浆、加强湿压榨作用和适当提高植物纤维用量等方法均可降低碳纤维间的接触电阻。
     碳纤维导电屏蔽纸具有较好的屏蔽性能,其屏蔽原理为反射损耗与吸收损耗,屏蔽效能随纸页导电性的升高而提高,并对不同频率的电磁波产生不同的屏蔽效能。增加碳纤维含量或者增加纸页厚度均能提高其屏蔽效能。
     银包铜粉加填碳纤维导电屏蔽纸对纸页导电性的提高效果不明显。但是将其制备成涂料后涂布于碳纤维导电屏蔽纸时,能够明显提高纸页的屏蔽效能。碳纤维导电屏蔽纸具有较好的屏蔽效能,能够代替厚重的金属板和容易氧化、脱落的金属涂层,应用于需要对电磁波进行屏蔽、防护及信息保密的军工、政治、商业、民用等场合,具有非常广阔的前景。
As the structures of high performance electronic equipments and devices become increasingly more complex, electromagnetic interference (EMI), electromagnetic radiation hazards and compatibility (EMC) have emerged as key issues. Therefore, Electromagnetic materials play a very important role in preventing electromagnetic radiation(EMR), EMI and guaranteeing information safety on such occasions of commerce, polity, national security, and so on.
     Carbon fiber will be a promised material for electromagnetic shielding because of its predominant characters, for example, good conductivity, light weight, low price (compared with metal fiber) and oxidation resistance. In this study, carbon fiber electromagnetic shielding paper was developed for reducing or preventing EMI, electromagnetic hazards and information leakage. The dispersion properties, papermaking process, mechanic properties, shielding properties and the influential factors of this paper were investigated; and the possibility and approach for manufacturing a higher-SE material were also presented in this paper.
     The analysises of FT-IR, SEM and titration indicated that there were a few oxygen-containing groups on the carbon fiber surface, and its dispersion was poor, but it could be improved by dispersants and surface treatment. After being nitric acid oxidized, the oxygen-containing groups and the specific surface area increased visibly, and the dispersion of carbon fiber was modified further. The carbon fiber could enhance the tensile index, burst index and tear index of the sheets to some degree within certain content; the conductance of the sheets rested heavily on the carbon fiber content, the more the carbon fiber content was, the higher the conductance the sheets had. The resistance decreased with the basic weight of the sheets increase, and well fited the physics conductive theory and model.
     The conductive network and the contact resistance had very important effects on the conductance of the conductive shielding paper. Increasing the carbon fibers length could enhance its conductance. Wet pressing, wood fiber beating and its dosage affected the contact resistance greatly. By adjusting the carbon fibers length, wood fiber dosage and papermaking process, conductive network could be optimized, and conductivity could be enhanced.
     The conductance shielding paper had good shielding effectness(SE), which result from reflection loss and absorption loss. The SE of the sheet increased visibly with the increase of carbon fiber content and the paper thickness. The SE also varied according to different electromagnetic wave frequency. In the frequency range of 600MHz~1.2GHz, the shielding paper had higher SE than that of other frequency. The conductive shielding paper with various SE (30dB~50dB) could be obtained by changing the carbon fiber content and the paper thickness.
     The effects of adding silver covered copper powder to the carbon fiber paper on the conductance and the SE were not so much as that of coating, and that presented us the possibility and approach for manufacturing a higher-SE paper could be used in different occasions for preventing or reducing EMI, electromagnetic hazards or information leakage.
引文
[1] 湖北省电磁兼容学会.电磁兼容性原理及应用[M].北京:国防工业出版社,1996.
    [2] 卢敬叁.电磁辐射污染环境[J].工业计量,1997(1):27-29.
    [3] 钟克煌,李中怡.屏蔽电磁波干扰的涂料[J].化工新型材料,1989,17(3):33-35.
    [4] 崔 升,沈晓冬,袁林生.电磁屏蔽和吸波材料的研究进展[J].电子元件与材料,2005,24(1):57-60.
    [5] 单雪荣.吸波材料在崛起[N].光明日报,1998-8-18(5).
    [6] 任丽萍.射电望远镜成 “瞎子”[N].生活时报,1998-7-23(7).
    [7] 白同云,吕晓德.电磁兼容设计[M].北京:北京邮电大学出版社,2001:1-7.
    [8] Morgon David. A HANDBOOK FOR EMC TESTING AND MEASUREMENT[M]. London: Ptter Peregrinus Ltd on Behalf of the Institute of Electrical Engineers, 1993: 5-20.
    [9] 管登高.镍基电磁波屏蔽复合涂料的研究及其在 EMC 的工程应用[D].成都:四川大学,2001.
    [10] Frohlich H. What are Non-thermal Electric Biological Effects?. Bioelectromagnetics. 1982, 3(1): 45-46.
    [11] 唐世钧,王保华,钟季康.生物医学电磁学非热效应现象与机理[J].国外医学生物医学分册,I 998,21(1):12-19.
    [12] 陈国璋,陈惠晓.谈谈生物电磁学研究热点——非热效应[J].物理,1998, 27(3):151-155.
    [13] 刘亚宁.电磁辐射生物效应的机理研究述评[J].基础医学与临床,2000,20(1):20-23.
    [14] 郭 鹤.漫谈电磁辐射生物效应[J].疾病控制杂志,2002, 6(Suppl.):1-8.
    [15] Sameera Kahan, Do Cellular Phones “COOK” Your Brain? TIME, 1996, Mar.16.
    [16] 胡玉翠,李建平,张世麟.计算机信息泄漏的防护措施[J].电子材料与电子技术,1993,20(4):47-50.
    [17] 毛 健.电磁波屏蔽材料的电磁特性研究及低反射、高吸收梯度功能设计[D].成都:四川大学,1999.
    [18] 张晓宁.层状复合电磁屏蔽材料的设计与制备[D].北京:北京工业大学,2000.
    [19] 蔡任钢.电磁兼容原理、设计和预测技术[M].北京:北京航空航天大学出版社,1997.
    [20] 刘顺华,郭辉进.电磁屏蔽与吸波材料[J].功能材料与器件学报,2002,8(3):213-217.
    [21] Larry Rupprecht, Development of conductive thermoplastic compounds for EMI/RFI applications[C]. In: EMI-RFI 40/60 Shielding Conference. Arizona: Tempe,1998: 4-7.
    [22] 魏铭炎.电磁兼容性(EMC)标准的制定和执行环境技术[M]. 国防工业出版,2000,6:16-20.
    [23] GB17743—1996,中华人民共和国国家标准[S].北京:中国标准出版社,1996.
    [24] T. G. Mann. EMC and Safety Standards for Computers:nine common myths[J]. EMC Test Res,1992, 3 (2),27-32.
    [25] 陈立军, 张心亚, 陈焕钦.导电涂料的研究现状及发展趋势[J].合成树脂及塑料, 2004,21(6):71-74.
    [26] Evans K. Conducting Polyaniline Composite for ESD and EMI at 1.1 GHZ[J]. Materials and Design,1984 ,43 (2) :43-46.
    [27] 林 硕,李志章,吴年强.电磁屏蔽导电复合涂层[J].材料导报,1996,(3):72-76.
    [28] Kortschot M T, Woodhams R T. Polymer Composites[J]. Synth. Met, 2000, 4 :296-299.
    [29] 巩晓阳,董企铭.吸波材料的研究现状与进展[J].河南科技大学学报(自然科学版),2003,24(2):19-22.
    [30] Ramakrishnan Rajagopalan, Jude O Iroh. A One-step Electrochemical Synthesis of Polyaniline-polypyrrole Composite Coatings on Carbon Fibers[J]. Electrochimica Acta, 2002,47:1847.
    [31] 宋月贤,王红理,郑元锁等.高导电聚苯胺薄膜的制备及其电磁屏蔽性能的研究[J].高分子学报,2002(1) :94.
    [32] 陈烨璞,商少明,吕仕元等.镀镍电磁屏蔽织物的研制[J].产业用纺织品,1996,14(6):11-14.
    [33] 张兴祥.射线防护织物与防护服的研究现状[J].产业用纺织品,1994,12(1):25-28.
    [34] 马铁军,师春生,李家俊等.镀金属毡在电磁屏蔽材料中的应用[J].宇航材料工艺,1999,29(2):53-55.
    [35] B.B Gutman. Electroconductive paper[J]. Bumazhnaya Promyshlennost,1956, 31 (6): 12-15.
    [36] CALGON Corporation. Improvements in the Making of a Paper Having an Electro-conductive Layer[P]. US: 462742, 1965.
    [37] Wessling B. Dispersion as the Link Between Basic Research and Commercial Applications of Conductive Polymers [J]. Synth. Met, 1998(2):144-147.
    [38] KIM BERLY-CLARK Corporation. Electrically Conductive Paper and Method of Making it [P]. US: 834396, 1963.
    [39] Shinaqawa, Shunichi, Kumaqai, Yaomi, Urabe, Kei. Conductive Papers Containing Metallized Polyester Fibers for Electromagnetic Interference Shielding[J]. Journal of Porous Materials, 1999(6):185-190.
    [40] Shinaqawa, etc. Conductive Papers for Electromagnetic Shielding[J]. IEEE, Piscataway, NJ, USA,1999(2):372-375.
    [41] 毕海峰,张玉梅,王华平.电磁屏蔽材料的发展[J].产业用纺织品,2001,19(6):7-9.
    [42] 许垒溪.导电纸问世[J].造纸信息, 1995( 5) :19.
    [43] 杨小平.炭纤维层压导电复合材料及其活性炭纤维纸功能化的研究与应用[D].北京:北京化工大学,2001.
    [44] 杨小平,荣浩鸣,沈曾民.碳纤维面状发热材料的性能研究[J].高科技纤维与应用,2000(3):39-42.
    [45] 谷晓昱.碳纤维导电纸电磁屏蔽性能的研究[D].北京:北京化工大学,1997.
    [46] 陈耀庭,周明义,王国全等.碳纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究[J].塑料科技, 1997(12):4-7.
    [47] 贺 福.碳纤维及其应用技术[M].北京:化学工业出版社,2004,6.
    [48] 王茂章,贺 福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.
    [49] 于 祺,陈 平,陆 春.纤维增强复合材料的界面研究进展[J].绝缘材料,2005(2):50-56.
    [50] 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [51] 吴 庆,陈惠芳,潘 鼎.碳纤维的表面处理[J].化工新型材料,2000,28(3):11-14.
    [52] 贺 福.用气相氧化法对碳纤维进行表面处理[J].复合材料学报,1998 , (1) : 569-573.
    [53] Yang Yonggang, He Fu, Li Zhijing, et. al1 Method for Treating Carbon Fiber Surface[P]. 中国专利:11573541, 1997 - 08 – 20.
    [54] Yue Z R, Jiang W, Wang L, et al. Surface Characterization of Electrochemically Oxidized Carbon Fibers[J]. Carbon, 1999, 37(11): 1785-1796.
    [55] 康 勇,项素云,梁培亮.沥青基碳纤维表面复合处理的研究[J].功能高分子学报,1999(3):450-452.
    [56] Boehm H. P. Advan. Catal. 1966,16:179.
    [57] R. J. Kerekesh, C. J. Schell. Characterization of Fiber Flocculation Regimes by a Crowding Factor[J]. JPPS,1992,18(1):32-38.
    [58] 韩宝国,关新春,欧进萍.两种表面活性剂对碳纤维的协同分散作用分析[J].玻璃钢/复合材料,2004(4):14-17.
    [59] Johnston James H, Richardson Michael J, Moraes John. New Conducting Polymer and Metallized Composites with Paper and Wood and Their Potential Application[C]. International Symposium on Wood, Fiber and Pulping Chemistry. Australia: Appita Inc., 2005:167-171.
    [60] 申前锋.甲壳素在抗菌纸中的研究[D].西安:陕西科技大学,2006.
    [61] 胡雅琴,王桂芹,段玉平等.偶联剂对碳黑/ABS 复合平板材料吸波效能的影响[J].塑料工业,2005,33(10):21-25.
    [62] 何益艳,杜仕国,施冬梅.铜系电磁屏蔽涂料的研究[J].现代涂料与涂装,2002(5):1-5.
    [63] 林 硕, 吴年强, 李志章.铜系复合涂料导电稳定性的研究[J].功能材料,1998,30(3):288-290.
    [64] 李 鹏,刘顺华,陈光昀.二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响[J].物理学报,2005,52(7):33-32.
    [65] 赵择卿,陈小立.高分子材料导电和抗静电技术及应用[M].北京:中国纺织出版社,2006,5:310-312.
    [66] 林润惠,邝守敏,吴葆敦.活性炭纤维纸的抄造技术研究[J].广东造纸,1999,5:57-61.
    [67] 任便利.亲水性电池隔膜纸的研究[D].西安:陕西科技大学,2007.
    [68] HuangJ C. Measurement of the Electromagnetic Shielding Properties of Mechanically Loaded Composites[J]. Adv. Polyml Technol,1995,14 (2):137.
    [69] 谭松庭.屏蔽EMI用导电性高分子复合材料[J]. 材料工程,1998(5):6-9.
    [70] 刘顺华.电磁屏蔽与吸波材料[J].功能材料与器件学报, 2002(3):212-217.
    [71] Lee C Y, Song H G, Jang K S, et al. Electromagnetic Interference Shieling Efficiency of Polyaniline Mixture and Multiplayer Films [J]. Synth Mentais, 1999, (102): 1346-1349.
    [72] Huang C Y. The EMI Shielding Effectiveness of PC/ABS/nickel- coated Carbon-fiber Composites [J]. Eur Polym J, 2000,(36): 2729-2737.
    [73] 汪荣华.金属导电层在屏蔽EMI/RFI中的应用[J].国外导弹与航天运载器,1988(9):67-74.
    [74] 黄婉霞.防信息泄漏电磁波屏蔽功能复合材料研究[D].成都:四川大学,1997.
    [75] 刘勇刚,刘素琴,李小刚等.PP/SEBS基导电复合材料的研制[J].工程塑料应用,2005,33(1):15-18.
    [76] 汪水平,翁 睿,吴志辉.不饱和聚酯树脂/炭黑/碳纤维复合材料的导电性能研究[J].玻璃钢/复合材料,2005(2):20-21.
    [77] Jana P B, Chaudhuri S, PalA K, et al. Electrical Conductivity of Short Carbon Fiber Reinforced Polychloroprene Rubber and Mechanism of Conduction[J]. Polym Eng Sci, 1992, 32 (6): 448-456.
    [78] 黄鹏波,杜仕国,闫 军等.偶联剂对炭黑导电涂料导电性能的影响[J].化工新型材料,33(1):49-51.
    [79] 郑 伟,彭 芳,徐承天等.银微粉的吸附性能及其悬浮体的分散稳定性[J].化学世界,2004(12):619-622.
    [80] 苏文强,杨开吉,朱明华等.新型CPAM的合成及CPAM /膨润土体系的助留助滤性能[J].造纸化学品,2006(1):13-16.
    [81] 毛连山,刘桂南,Claude Daneault等.纸浆阳离子化及其研究进展[J],中国造纸,2007,26(7):45-47.
    [82] 马永生,邱化玉.纸浆的改性及其研究进展[J].中国造纸学报,2004,19(1):212-217.
    [83] 隆言泉.造纸原理与工程[M].北京:中国轻工业出版社,1994:97.
    [84] 王宏军.粉末填料/聚合物导电复合材料的导电机理[J].高分子材料科学与工程,1990 (6),1-8.
    [85] Abdel-Bary E M. Factors Affecting Electrical Conductivity of Carbon Black-loaded Rubber[J]. Polym. sci, Polym Chem., 1979, 17(7): 2163-2172.
    [86] 曹晓国,张海燕.镀银Fe3O4 粉的制备及其导电性能研究[J].材料工程,2007(4):54-60
    [87] 黄白尘,顾莉琴,顾利霞.载银纳米氧化锌在聚丙烯腈原液中分散性能的研究[J].合成纤维,2007,2:16-20.
    [88] 周文君, 骆超群.镀银铜粉导电涂料的研究[J].杭州师范学院学报(自然科学版),2005,4(4):301-304.
    [89] 李哲男,董星龙,王威娜.铜系导电涂料中纳米铜粉抗氧化问题的研究[J].四川大学学报(自然科学版),2005,42(2):220-224.
    [90] 冯春波,杜志平,李秋小.聚乙烯吡咯烷酮及鞣酸对纳米金制备的影响[J].日用化学工业,2006,36(2):85-87.
    [91] 孙春桃,吴士筠.纳米银包覆铜粉体的制备及其导电性能研究[J].化学与生物工程,2003(6):26-28.
    [92] Cheng Jingquan,Yao Suwei. Preparation of Well-Dispersed Silver Colloids in the Ultrasonic Field[J].稀有金属材料与工程,2005,34(11):1717-1721.
    [93] 吴懿平,吴大海,袁忠发等.镀银铜粉导电胶的研究[J].电子元件与材料,2005,24(4):32-35.
    [94] 安郁琴,刘 忠.制浆造纸助剂[M].北京:中国轻工业出版社,2003:149-150.
    [95] 崔英德,易国斌,廖 列.聚乙烯吡咯烷酮的合成与应用[M].北京:科学出版社,2001.
    [96] Lilei Ye, Zonghe Lai, Johan Liu, et al. Effect of Particle Size on Elect rical Conductivity of ISOT ropically Conductive Adhesives[J] . IEEE Trans Electr Packg Manuf, 1999, 22(4): 299-302.
    [97] Li Li ,J ames E , Morris. Electrical conduction models for isotropically conductive adhesive joints[J] . IEEE Trans Comp Packg Manuf Technol, 1997, 20(1A): 3-8.
    [98] Ruschau G R, Yoshikawa S, Newnham R E. Resistivities of conductive composites[J]. App. Phys.,1992(3) : 953-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700