用户名: 密码: 验证码:
多尺度上多物种的多格局及其尺度推绎
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的生长固然与自身特性有关,也与其生境中环境要素及其它物种相互作用相互影响,牵涉到生物格局、环境格局和景观格局的相互作用,已有研究表明,这种作用具有多尺度特性。量化这三种格局的某些重要特征,将有利于理解这种尺度行为对格局的影响,甚至量化格局在多尺度上的一些特性,同时数量化后的特征也方便进行尺度推绎。
     本文在古尔班通古特沙漠南缘莫索湾沙地选取相隔15km的两个200m×200m样地,以心叶驼绒藜(Ceratoides ewersmanniana)、梭梭(Haloxylon ammodendron)、琵琶柴(Perosimonia soongorica)和淡枝沙拐枣(Calligonum leucocladum)及其生境地形和土壤理化性质为研究对象,联合小波分析(WAA)、点格局分析(PPA)和典范对应分析(CCA)研究莫索湾沙漠4种灌木种内的聚集性(成丛性)及其周期性、种间相互作用、边缘效应及其与生境地形和土壤理化性质的关系,最后将所得结论在合适的尺度上进行了推绎。结果发现:
     (1)表观上沙生植物分布非连续,但是可形成25-80m尺度范围的成丛性分布(“虎纹”),且周期性出现,心叶驼绒藜周期为115-125m、梭梭周期为130-140m,研究表明,周期为110m的地形基频是植物成丛性周期形成的主因。琵琶柴和淡枝沙拐枣虽成丛分布,但未发现其周期,其周期可能在更大的幅度上存在。
     (2)其次,东西方向的边缘量化检测结果表明:东西方向也存在功能边缘和结构边缘,不像南北边缘的位置是受到太阳辐射和遮阴作用影响,东西边缘的位置却是受到了垄状沙丘大小和地形的影响,且东西边缘的存在可能使幼苗更容易生长。
     (3)再次,种间关系研究发现:4种灌木相互都是负相关,且在大多数尺度上是显著负相关。荒漠植物通过成丛或聚集分布可以形成适合本物种生存的局部微生境。
     (4)在尺度推绎过程中也可以得出结论(1),小波分析对信号整体特征的提取作用实现了小尺度上的信息到大尺度上的聚合。结合小波分析对信号突变点的检测,利用位置方差检验局部空间异质性程度,发现位置方差将大尺度上的格局分解到每个取样小样方,位置方差最大的地点对应的异质性也最强,实现了大尺度上的信息到小尺度上的分解。总结认为应用小波分析可以实现对空间格局的尺度推绎,具有对植被、环境的分布格局以及异质性有双重度量作用,由小波系数以及由其衍生的小波方差、位置方差来实现这种度量,图形表现直观,优越性明显。
We investigated the distributions and habitats of Ceratoides ewersmanniana, Haloxylon ammodendron, Rerosimonia soongorica and Calligonum leucocladum in two plots (200m×200m, the distance between the plots is 15 km) at Mosuowan desert. We analyzed their intraspecific clumpiness (caespitose) and periodicity, interspecific interaction, edge effect, and their relationship with habitats’geomorphology and soil physical and chemical properties.Wavelet analysis was used to detect edges from east to west, explain its existence, and quantify its location; Furthermore, we combined Wavelet Analysis and Point Pattern Analysis to detect and quantify the scales and periods of clumpiness. Finally, using Wavelet Analysis, Point Pattern Analysis and Canonical Correspondence Analysis, we studies the importance of habitats’geomorphology and soil physical or chemical properties to biological patterns.
     We got some important finding: First of all, the distributions of C.ewersmanniana and H.ammodendron were non-continuous, rather showing aggregated and periodic distribution patterns (115-125m for C.ewersmanniana, and 130-140m for H.ammodendron), which were caused by the geomorphologic oscillation period at 110m. P.soongorica and C.leucocladum showed aggregated distribution patterns but no period.
     Second, detected edge effect demonstrated that the east-west edges corresponding to the influences of their geomorphology, in the contrary, the south-north edges corresponded to the influences of incoming solar radiation, shad effect and surface characteristics.
     Third, the result of interspecific interactions indicated that aggregation of desert plants was correlated with habitat conditions. Desert plants could form a micro-habitat by aggregation to reduce evaportranspiration stress and serve as an important adaptive strategy at the community level.
     Finally, we also identified signal catastrophe points with wavelets and verified heterogeneity degree of local space with position variance. We found that position variance decomposed the distribution patterns at large scale into small sampling plot, and the position with the largest variance also had strongest heterogeneity. In a word, wavelet analysis method could scale-up spatial distribution patterns and habit heterogeneity. With this method and other method derived from this one, such as, wavelet scale, wavelet variance, position variance, and extremely direct-viewing graphs, wavelet analysis could be widely applied in solving the scaling problem in ecological and environmental studies.
引文
[1] 李海涛. 植物种群分布格局研究概况[J]. 植物学通报, 1995, 12(2):19?26.
    [2] 朱震达. 中国土地荒漠化的概念、成因与防治[J]. 第四纪研究, 1998, (2):145?155.
    [3] 杨健. 新疆土地荒漠化及其防治政策[J]. 生态学杂志, 2000, 19(3):57?60.
    [4] 王让会, 周兴挂, 张惠珍, 等. 新疆土地荒漠化灾害及其对策[J]. 南京林业大学学报, 2002, 26(2):32?36.
    [5] 朱震达, 崔书红. 中国荒漠化土地分布地域特征及其治理措施的评估[J]. 1996, 16(5):328?334.
    [6] 张世军, 张希明, 王雪梅, 等. 古尔班通古特沙漠边缘春秋季沙丘水分状况初步研究[J]. 2005, 19(3):132?136.
    [7] 季方, 叶玮, 魏文寿. 古尔班通古特沙漠固定与半固定沙丘成因初探[J]. 干旱区地理, 2000, 23(1):32?36.
    [8] 黄培祐. 莫索湾的开发及其对荒漠生态系统影响的初步评估[J]. 干旱区地理. 1989, 12(2):1?6.
    [9] 张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2002, 22 (11): 1923?1932.
    [10] 钱亦兵, 吴兆宁, 张立运, 等. 古尔班通古特沙漠生境对植物群落格局的影响[J]. 地理学报,2004, 59(6):895?902
    [11] 晋瑜,潘存德,王梅,等. 荒漠植物群落物种多样性及其测度指标比较[J]. 干旱区地理, 2005, 28(1):113?119.
    [12] 马克平. 生物群落多样性的测度方法Iα多样性的测度方法(上) [J]. 生物多样性, 1994, 2(3):162?168.
    [13] 马克平. 生物群落多样性的测度方法I α样性的测度方法(下) [J]. 生物多样性, 1994, 2(4):231?239.
    [14] 马克平, 刘灿然, 刘玉明. 生物群落多样性的测度方法Ⅱβ多样性的测度方法[J]. 生物多样性, 1995, 3(1):38?43.
    [15] 毛祖美, 张佃民. 新疆北部早春短命植物区系纲要[J]. 干旱区研究, 1994, 11(3):1?26.
    [16] 魏文寿. 现代沙漠对气候变化的响应与反馈:以古尔班通古特沙漠为例[J]. 2003, 45(6):636?641.
    [17] 薛娴, 王涛, 吴薇, 孙庆伟, 等. 中国北方农牧交错区沙漠化发展过程及其成因分析[J]. 中国沙 漠, 2005, 25(3):320?328.
    [18] 朱震达, 王涛. 中国沙漠化研究的理论与实践[J]. 第四纪研究, 1992, (2):97?106.
    [19] 王政权. 地统计学及其在生态学中的应用[M]. 科学出版社,1999 年.
    [20] 王政权, 王庆成, 李哈滨, 等. 红松老龄林主要树种的空间异质性特征与比较的定量研究[J]. 植 物生态学报, 2000, 24(6):718?723.
    [21] 李哈滨, 王政权, 等. 空间异质性定量研究理论与方法[J]. 应用生态学报, 1998, 9(6):651?657.
    [22] 魏文寿 , 刘明哲 . 古尔班通古特沙漠现代沙漠环境与气候变化 [J]. 中国沙漠 , 2000, 20(2):178?184.
    [23] 刘彤 , 等 . 莫索湾南缘沙漠植物群落多样性抽样方法的研究 [J]. 干旱区地理 , 2006, 29(3):365?374.
    [24] 钱亦兵, 等. 古尔班通古特沙漠生境对植物群落格局的影响[J]. 地理学报, 2004, 59(6):895?902.
    [25] 袁哲明, 付威, 李方一, 等. 二化螟种群空间格局的经典分析与地统计学比较研究[J]. 应用生态学报, 2004, 15(4):610?614.
    [26] 李海涛. 植物种群分布格局研究概况[J]. 植物学通报, 1995, 12(2):19?25.
    [27] 马茂华, 孔令韶. 新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究[J] . 植物生态学报, 1998,22(3):237?244.
    [28] 彦铭. 新疆若干植物群落对土壤和地下水指示性的初步研究[J]. 植物生态学与地植物学学报, 1989, 13(1):18?27.
    [29] 李向义, 曾凡江, 张希明, 何兴元. 自然状况下头状沙拐枣对水分条件变化的响应[J]. 植物生态学报, 2003, 27(4):516?521.
    [30] 新疆植被及其利用[M]. 中国科学院新疆综合考察队主编. 科学出版社. 1978.
    [31] 贾广寿. 新疆荒漠草地现状及其开发利用[J]. 草食家畜, 1994, (3):41?44.
    [32] 何志斌, 赵文智. 黑河流域荒漠绿洲过渡带两种优势植物种群空间格局特征[J]. 应用生态学报, 2004, 15(6):947?952.
    [33] 贾亚敏. 莫索湾南缘沙漠心叶驼绒藜种群空间分布格局的生态生物学研究:[石河子大学硕士学位论文]. 石河子大学, 2007 年.
    [34] 谢江波, 刘彤, 魏鹏, 贾亚敏, 骆郴. 小波分析方法在心叶驼绒藜空间格局的尺度推绎研究中的应用. 生态学报, 2007, 27(7), 2704?2714.
    [35] Xie Jiangbo, Liu Tong, Wei Peng, Jia Yamin, Luo Chen. Ecological application of wavelet analysis in the scaling of spatial distribution patterns of Ceratoides ewersmanniana. Acta Ecologica Sinica, 2007, 27(7), 2704?2714.
    [36] HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H. Vegetation patterns formation in semi?arid grazing systems. Ecology 2001;82(1):50?61
    [37] Thiery, J. M., J. M. D’Herbes, and C. Valentin. 1995. A model simulating the genesis of banded vegetation patterns in Niger. Journal of Ecology, 83:497–507.
    [38] Jeltsch, F., S. J. Milton, W. R. J. Dean, and N. van Rooyen. 1997. Simulated pattern formation around artificial waterholes in the semi?arid Kalahari. Journal of Vegetation Science, 8:177–188.
    [39] Bromley, J., Brouwer, J., Barker, A.P., Gaze, S.R., Valentin, C., 1997. The role of surface water redistribution in an area of patterned vegetation in a semi?arid environment, southwest Niger. Journal of Hydrology 198:1–29.
    [40] Lefever, R., and O. Lejeune. 1997. On the origin of tiger bush. Bulletin of Mathematical Biology 59:263–294.
    [41] Greig Smith P. Quantitative Plant Ecology 3rd edn. Blackwell Scientific Publication, Oxford, 1983.
    [42] 杨洪晓, 张金屯, 吴波, 等. 毛乌素沙地油蒿种群点格局分析. 植物生态学报, 2006, 30(4), 563?570.
    [43] Zhang C, Zhang M J, Xu C, et al. Analysis of Aggregation in desert plant species in sand lake,Ninxia Autonomous Region,China. Journal of Plant Ecology, 2007,31(1), 32–39.
    [44] Redding TE, Hope GD, Fortin MJ, Schmidt MG, Bailey WG. Spatial patterns of soil temperature and moisture across subalpine forest–clearcut edges in the southern interior of British Columbia. Canadian Journal of Soil Science, 2003, 83, 121–130.
    [45] Chen XW, Li BL, Collins SL. Multiscale monitoring of a multispecies case study:two grass species at Sevilleta. Plant Ecology, 2005, 179, 49–154
    [46] 张金屯. 植物种群分布格局的点格局分析. 植物生态学报, 1998, 22(4): 344?349.
    [47] Saunders SC, Chen J, Crow TR, Brosofske KD. Hierarchical relationships between landscape structure and temperature in a managed forest landscape. Landscape Ecology, 1998, 13(6), 381–395.
    [48] Lark RM, Webster R. Analysis and elucidation of soil variation using wavelets. European journal of soil science, 1999, 50(2):185–206.
    [49] Rigozo NR, Nordemann D JR, Zanandrea A, et al. Solar variability effects studied by tree–ring data wavelet analysis. Advances in Space Research, 2002, 29(12):1985–1988.
    [50] Brosofske KD, Chen J, Crow TR, Saunders SC. Vegetation responses to landscape structure atmultiple scales across a Northern Wisconsin, USA, pine barrens landscape. Plant Ecology, 1999, 143:203–218.
    [51] Csillag F, Kabos S. Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience, 2002, 9(2):177–190.
    [52] 祖元刚, 赵则海, 丛沛桐, 等. 兴安落叶松林(Larix gmelinii)林窗分布规律的小波分析研究. 生态学报, 1999, 19(6): 927?931.
    [53] Saunders SC, Chen JQ, Drummer TD, Gustafson EJ, Brosofske KD. Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecological Complexity, 2005, 2,87–105.
    [54] Gaucherel C, Burel F, Baudry J. Multiscale and surface pattern analysis of the effect of landscape pattern on carabid beetles distribution. Ecological Indicators, 2007, 7,598–609.
    [55] 周睿, 胡玉喆, 熊颖, 等. 岷江上游河岸带土地覆盖格局及其生态学解释. 植物生态学报, 2007, 31(1): 2?10.
    [56] Chen J, Franklin JF, Spies TA. Growing season microclimatic gradients from clearcut edges into old–growth Douglas–fir forests. Ecological Applications,1995, 5, 74–86.
    [57] Cadenasso ML, Traynor MM, Pickett STA. Functional location of forest edges: gradients of multiple physical factors. Canadian Journal of Forest Research, 1997, 27, 774–782.
    [58] Davies Colley RJ, Payne GW, van Elswijk M. Microclimate gradients across a forest edge. New Zealand Journal of Ecology, 2000, 24(2), 111–121.
    [59] Asselin H, Fortin MJ, Bergeron Y. Spatial distribution of late–successional coniferous species regeneration following disturbance in southwestern Quebec boreal forest. Forest Ecology and Management, 2001, 140, 29–37.
    [60] Harper KA, Macdonald SE. Structure and composition of riparian boreal forest: new methods for analyzing edge influence. Ecology, 2001, 82, 649–659.
    [61] Saunders SC, Chen J, Drummer TD, Crow TR. Modeling temperature gradients across edges over time in a managed landscape. Forest Ecology and Management, 1999, 117, 17–31.
    [62] 赵文武, 傅伯杰, 陈利顶. 尺度推绎研究中的几点基本问题. 地球科学进展, 2002, 17(6): 905?911.
    [63] 郭达志, 方涛, 杜培军, 等. 论复杂系统研究的等级结构与尺度推绎. 中国矿业大学学报, 2003, 32 (3): 213?217.
    [64] 谢江波, 刘彤, 崔运河, 张元航. 多尺度上多物种多格局研究——以莫索湾沙漠四种灌木及其生境为例. 生态学报, 2008, 5: 0001?0015.
    [65] 赵则海. 辽东栎林植被格局的非线性生态学模型:[东北林业大学硕士学位论文]. 东北林业大学, 2000.
    [66] 张程, 张明娟, 徐驰, 等. 宁夏沙湖几种主要荒漠植物成丛性分析. 植物生态学报, 2007, 31(1): 32?39.
    [67] Perry J N, Liebhold A M, Rosenberg M S, et al. Illustrations andguidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography, 2002, 25:578?600.
    [68] 孙丹峰. IKONOS影像景观格局特征尺度的小波与半方差分析. 生态学报, 2003, 23(3): 405?413.
    [69] Dale MRT, Mah M. The use of wavelets for spatial pattern analysis in ecology. Journal of Vegetation Science, 9(6): 805–814.
    [70] Bradshaw GA, Spies TA(1992). Characterizing canopy gap structure in forests using wavelet analysis. Journal of ecology, 1998, 80(2): 205–215.
    [71] Gao W, Li B L. Wavelet analysis of coherent structures at the atmosphere–forest interface. Journal of Applied Meteorology, 1993, 32(11):1717–1725.
    [72] Li B L, Loehle C. Wavelet analysis of multiscale permeabilities in the subsurface. GeophysicalResearch Letters, 1995, 22(23): 3123–3126.
    [73] 张峰, 张金屯. 我国植被数量分类和排序研究进展. 山西大学学报(自然科学版), 2000, 23(3): 278?282.
    [74] 宋永昌. 植被生态学. 华东师范大学出版社, 2001.
    [75] 张金屯. 数量生态学. 科学出版社, 2004.
    [76] 蒋进, 王雪芹, 雷加强. 古尔班通古特沙漠工程防护体系内土壤水分变化规律. 水土保持学报, 2003, 3: 74?77.
    [77] 王雪芹, 蒋进, 雷加强, 张伟民, 钱亦兵. 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 2003,4: 598?604.
    [78] 刘彤, 崔运河, 翟伟, 等. 莫索湾南缘沙漠植物群落多样性抽样方法的研究.干旱区地理, 2006, 29(3): 365?374.
    [79] Bergkamp, G., Cerda` , A., Imeson, A.C. Magnitude?frequency analysis of waterredistribution along a climate gradient in Spain. Catena, 1999, 37, 129–146.
    [80] Puigdefa′ bregas, J., Sole, A., Gutie′ rrez, L., del Barrio, G., Boer, M., 1999.Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. EarthScience Reviews,1999, 48, 39–70.
    [81] Goberna, M., Pascual, J.A., Garca’ C., Sa’nchez, J., 2007. Do plant clumps constitute microbial hotspots in semiarid Mediterranean patchy landscapes? Soil Biology & Biochemistry, 2007, 39 ,1047–1054
    [82] Lopez PJ,Montana C. Spatial distribution of Prosopis glandulosa var.torreyana in vegetation stripes of the southern Chihuahuan Dersert.Acta Oecologic, 1999,20, 197–208.
    [83] 张元明, 陈亚宁, 张小雷. 塔里木河下游植物群落分布格局及其环境解释.地理学报, 2004, 59(6): 903?910.
    [84] De la Pena NM, Butet A, Delettre Y, et al.. Landscape context and carabid beetles (Coleoptera: carabidae) communities of hedgerows in western France. Agriculture, Ecosystems and Environment, 2003, 94, 59–72.
    [85] Aviron S, Burel F, Baudry J, Schermann N. Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agriculture, Ecosystems and Environment, 2004, 108, 205–217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700