用户名: 密码: 验证码:
轨道列车车轮的结构分析及其轧制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道列车主要包括机车、载重货车、客车和高速动车组以及城市轨道列车等。车轮是轨道列车所有零部件中最基本的部件,承担着支撑车体重量及列车走行的重要使命,是影响列车行驶安全性及稳定性的关键部件之一。
     目前,我国轨道列车正朝着高速、重载方向发展。列车速度的提高、轴重的增大,使得作为轨道列车重要承载部件的车轮所承受的载荷状况越来越恶劣,车轮的磨损愈发严重。为了减少车轮的磨损,延长车轮的寿命,除了从车轮材质考虑之外,合理的车轮成形工艺流程对确保车轮内在质量,形状尺寸和外观精度也具有重要意义。作为车轮热成型工艺的重要一环,轧制工艺就显得更为重要。车轮轧制的主要作用是对模锻后的轮坯进行轧制扩径,延展辐板,并完成轮辋、轮缘及踏面的精确成型。由于车轮形状复杂,车轮轧制过程所需的轧辊数量多,控制参数复杂,轧坯旋转圈数多,车轮轧制是一种特殊的环件轧制工艺,它比普通的环件轧制要复杂得多。
     本论文通过对车轮结构及受力的分析,选择车轮热成型工艺中的轧制技术作为研究内容,并着重对车轮立式轧机及轧辊的尺寸形状进行设计。
With society developing, there are more and more stock and people to be transported, which aggravated the burden of the carrying trade. As a kind of important conveyance, it needs rail train (including engine, over loading train, high speed train, city rail train and so on) to grow high speed and over loading. However, the higher speed and the heavier axle make the load on the wheel, which is the most important part of the rail train, become more complex. There are varieties of failure forms threatening the life of the rail wheel all the time, such as abrasion of the wheel, abrading of the tread, fatigue crack, etc.
     According to the structure of the wheel, it consists of the wheel with hoop and the integrative wheel. As the rail train developing, the integrative wheel has gradually replaced the wheel with hoop, and comprehensive used. The forces on the wheel have been analyzed the time that it is under the dead load, or that it is normal running, or that it is braking, though ANSYS a kind of finite element analysis soft. So there are three conclusions here. First, when it is under dead load, the greatest stress of the wheel occurred inside the hub. The value is in the safe range. And the wheel is not seriously damaged; Secondly, when the wheel is normal running, the greatest stress appeared on the knuckle between wheel web and the hub. The value is greater, so it has a relative great effect on the wheel. Third, when it is braking, the abrasion of the tread is remarkable. Undoubtedly it is an illumination for improving the structure of the wheel.
     In order to insure the inner quality, the shape, dimension and the precision, it is essential to make a reasonable deforming craft. Rolling is an important part of the thermal deforming, with responsibility for extending the diameter and the web. As well as, the precise deformation of the rim, the edge and the tread is finished by rolling. Because the shape of the wheel is complex, there are many rollers in the rolling process. Otherwise, there are varieties of controls parameters and the rolling cylinder number of the wheel is a lot. The wheel rolling is a special form of loop rolling, however it is more complex than the ordinary loop rolling.
     Actually, such a complex rolling process must depend on an appropriate rolling mill. According to the position of the wheel, rolling mills include horizontal rail wheel rolling mills and vertical rail wheel rolling mills. Compared to horizontal rolling mills, vertical rolling mills have more advantages, including: (1) The wheel web can be reduced uniformly, and it can avoid to producing steps; (2) It is benefit to reduce the eccentricity of the wheel; (3) Because the wheel is always in the vertical position during the rolling process, it prevents the surface of the wheel form being damaged by the oxide skin. And the tailor-made edger rollers on the vertical rolling mill are used to confirm the width of the rims, which can reduce the glide of the wheel and it is easily deformed; (4) The rollers on the vertical rolling mill are independent, each roller has its solely movement. So the rollers are universal, as well as, it costs less; (5) Large draught pressure, it has less rolling time and better rolling quality than the horizontal rolling mill as a super large wheel is rolled; (6) The edger rollers and the web rollers on the vertical rolling mill individually in the charge of deforming the rim and the web of the wheel. So it can roll the web with different thickness; (7) When a hot stock is rolled, its dimension is measured by the laser. And the precision can reach the level of millimeter.
     However, it is hard to control the three-dimensional position of the rollers on vertical rolling mill. And it is discommodious for the delivery of the stock on vertical rolling mill. On horizontal rolling mill the stock and the wheel can be delivered at the same time to reduce the assistant time. Different from horizontal rolling mill, on vertical rolling mill the stock can not get in until the wheel gets out. In allusion to these problems, a new rail wheel vertical rolling mill appeared in the thesis, and it brought forward the design proposal of general mechanism. Furthermore it confirmed the final running scheme and the structure scheme of complete appliance after analyzing the main problems in the scheme.
     There are main gearing, frame, roll bearing, side pressure gearing, rail chair, roll regulation equipment, roll change mechanism, etc. on new rail wheel vertical rolling mill. Primary components on the rolling introduced weldable steel with low stress, and all gear shafts, accessories and rollers are fixed on the bearing block. The design of rollers and conveyer equipment is the keystone in the thesis.
     First of all, some primary parameters of the rollers are confirmed, such as the diameter, rolling pressure, rolling speed and so on. The new vertical rolling mill is comprised with eight rollers, including one king roller, two web rollers, two edger rollers, two centring rollers and one guiding roller. The web rollers are active, which take charge of rolling the inner surface of the rim and the web. The king roller takes charge of rolling the flange and the tread of the wheel. The edger roller takes charge of rolling the lateral surface of the rim, and making the width of the rim under control. And the centring rollers and the guiding roller can balance the pressure with responsibility for guiding and locating. Additionally, the new vertical rolling mill has an orbital conveying mechanism. Compared with conventional conveying mechanism, the worked efficiency is increased. When it is feeding, the stock rolls directly into the pass formed by the guiding roller and two centring rollers. And when the rolling process is finished, the guide will shift to the right, at the same time, the left centring roller will get down and the right centring roller will shift up. Once they are in the appropriate position, the formed wheel will slide to the next process.
     As the deformed tools, the rollers contact with the wheel directly. How to design the shape and the dimension is relation to the situation of the formed wheel. So it is significant to design the rollers exactly. Firstly, the shape and the dimension of a rough wheel and a stock should be finished. During this time, the precise allowance for finish are confirmed which relates to the parameters of the vertical rolling mill. According to hardness condition, working circumstance and previous experience, the design of all the rollers on the new rail wheel vertical rolling mill is completed in the thesis.
引文
[1] 水恒勇,张永权,杨才福. 高速列车车轮用材料的开发动向. 钢铁研究学报,2003, 15(3):66~69
    [2] 俞展猷译. 铁路机车车辆轮对. 中国铁道出版社,1981(7):1~3
    [3] 赵金光. 国内外轮对产品标准对比分析. 铁道机车车辆工人,2006,2:6~9
    [4] 严隽耄. 车辆工程. 中国铁道出版社. 2003,1:35
    [5] 张军. 基于有限元法的轮轨蠕滑理论研究. 大连理工大学,2003,5:2
    [6] RogerLunden,等(瑞典). 30t 轴重轮对的研制. 国外铁道车辆,2002(39),4:31
    [7] 严隽耄,翟婉明,陈清,傅茂海. 重载列车系统动力学. 中国铁道出版社,2003(12):5~10
    [8] 范荣平,孟光,崔银会. 弹性车轮的发展与应用研究. 机车电传动,2005,1
    [9] Walker J G,Ferguson N S,Smith M G. An investigation of noise from trains on bridges [J]. Journal of Sound and Vibration,1996,193 (1):3072314
    [10] 卡尔萨克斯(孙翔译). 电传动机车转向架结构与原理(上册)[M]. 北京:中国铁道出版社,1988
    [11] Gietl A,Leo R,Singer G. Wheel,especially disk wheel[P]. DE3345555,1985
    [12] Spiller H D,Wackerle P. Disk wheel,Especially railroad wheel[P]. DE3506007,1986
    [13] Bongers B,Meurer R,OefnerW. Rail wheel [P]. DE3814343,1989; DE3814344,1989; DE 3814345,1989
    [14] Wackerle P M,Grober J,Sperber F. Disc wheel,particularly for rail vehicles[P]. US4863207,1989
    [15] OefnerW,Rode K. Lightweight hollow wheel for rail vehicle[P]. DE4402985,1995
    [16] Christian G. Drehbarer Korper[P]. DE 3143845,1983
    [17] Bansemir H,Bongers B,Eschbaumer H. Rail wheel[P]. US5618076,1997
    [18] Jaus R. Wheel set for rail vehicles [ P ]. US 4915436,1990.
    [19] 李芾,傅茂海,黄运华,倪文波. 城市轻轨车辆及其相关技术的发展. 电力机车与城轨车辆,2004,27(1):8~13
    [20] 黄运华,傅茂海,卜继玲,李芾. 独立轮对发展及应用前景. 电力机车及城轨车辆,2003,26(4):33~37
    [21] 董锡明. 近代高速列车技术进展. 铁道机车车辆,2006,26(5):1~11
    [22] 钱立新. 速度 350km/h 等级世界高速列车技术发展综述. 中国铁道科学,2007,28(4):70
    [23] 候梅英. 中国铁路动车组运用的几点思考. 平原大学学报,2007,24(5):123
    [24] 张斌,卢观健等. 铁道车轮、轮箍失效分析及伤损图谱. 北京:中国铁道出版社,2002
    [25] 阎国臣,何庆复,高义刚. 车轮磨损失效研究. 材料工程,2002,20(2):26~28
    [26] 尹桂江. 铁道车辆轮对及轴承的结构与检修. 中国铁道出版社,1995:25~27
    [27] 宋志坤,何庆复,孙淡等. 车轮制动热疲劳损伤研究综述. 铁道车辆,1997,35(9):43~46
    [28] Yoshitsugu Kimura.Wear and fatigue in rolling contact. Processing of contact mechanics and wear of rail/wheel systems,5th international conferenct,Tokyo,Japan,20110:1~8
    [29] S.M.Kulkarmi. Elasto-plastic FEA of Repeated there-D Elliptical Rolling Contact with Rail Wheel Properties,Jouranl of Tribology transactions of the ASME,1991,7
    [30] Johan Ahlstrom , Birger Karlsson. Modelling of heat conduction and phase transformations during wheel sliding-theoretical predictions and comparison with results of full-scale experiments. Processing of contact mechanics and wear of rail/wheel systems,5th international conferenct,Tokyo,Japan,2000:287~292
    [31] 金学松,刘启跃. 轮轨摩擦学. 北京:中国铁道出版社,2004
    [32] 王文健,刘启跃. 车轮踏面剥离机理研究. 机械,2004,31(6):12~15
    [33] Wheel shelling and spalling research.railway age,December 1989
    [34] Stone,Daniel.H,Moyer.Interpretive review of railway wheel shelling and spalling. Winter annual meeting of the American society of mechanical engineers. CA,USA,1992,5:97~103
    [35] Greg Gagarin,刘爱东. 机车制动系统. 国外内燃机车,2000,(05)
    [36] Francois Demilly Valdunes,Christian Pignerol Valdunes. 有效降低轮对噪声. 铁道交 2006(8):48
    [37] 秦国庆,李连诗,韩静涛. 车轮生产现状及发展趋势. 河北冶金,1998(6):9~11
    [38] 郭长武,杨红,刘树枫. 车轮生产新工艺. 轧钢,1996,(8):392-393
    [39] 赵云辉. 提速 DF4 型机车轮缘磨耗分析及对策[J]. 铁道机车车辆,2001 (2):24~25
    [40] 张高萍,武立仓,刘会强.马钢火车轮生产系统技术改造.轧钢,2000,17(4):34~36
    [41] 王志诚.火车车轮制造新工艺实验研究和数值模拟.清华大学博士学位论文,1993
    [42] 孙友松,刘天湖,肖小亭.面向新世纪的塑性加工技术.锻压技术,2000(2):59~60
    [43] 裴兴华,王广春,张辉,等. 火车车轮摆辗成形模拟实验研究. 锻压技术,1995(3):33~36
    [44] 裘哲. 马钢火车车轮锻压工艺及模具改进的实验研究. 清华大学硕士学位论文,1992
    [45] D. GUY,F. G. WILSON.Forging Developments for Railway and Ring Rolled Products[A].C. M. SELLARS,G. J. DAVIES ads.Hot Working and Forging Processes[C],Lond: The Metals Society,1997:204~208
    [46] B C Miller,M J Ward, K. Davey.The Numerical Simulation of Potential Forming Problems in Railway Wheel and Tyre Manufacturing Process[A].The International Conference on Forging and Related Tech[C].Birmingham U. K. April,1998:201~216
    [47] M J Ward,B C Miller,K. Davey.Simulation of a Multistage Railway Wheel and Tyre Forming Process[J] . Journal of Materials Processing Technology , 1998 (80-81):206~212
    [48] K. Davey,B C Miller, M J Ward.Efficient strategies for the simulation of railway wheel forming[J] . Journal 0f Materials Processing Technology , 2001 ,118(1~3):389~396
    [49] 张曼翊,孙雪坤,王国栋,等.数值模拟技术在我国钢铁工业中的应用现状与展望.钢铁研究,2000 (2):53~58
    [50] 王志诚,王祖唐,胡忠.火车车轮制造新工艺数值模拟.塑性工程学报,1995,2(4):3~11
    [51] 许章泽,李胜祗,闫军,等.火车车轮压痕工艺数值模拟.安徽工业大学学报,2002,19(4):281~283
    [52] 许章泽,李胜祗,闫军,等.火车车轮预成形过程的有限元分析.重型机械,2002(6):35~38
    [53] 秦国庆,韩静涛. 车轮不同生产方式及特性分析. 锻压技术,1999(6):31~32
    [54] 管延锦,找国群,李辉平,王广春,宋志俭. 基于反求工程和激光快速成型技术的新型车轮开发. 机械设计与研究. 2003(19),4:75
    [55] 李翔,许章泽,安涛,李小字,李胜祗,阎军,孙中建. 火车车轮成形工艺现状与展望. 锻压装备与制造技术,2003,10:14~16
    [56] 张高萍,武立仓,刘会强. 马钢火车车轮生产系统技术制造. 轧钢,2000(17),4:35
    [57] Ward M J,Miller B C,Davey K. Simulation of Multi-Stage Railway Wheel and Tyre Forming Process [J]. Journal of Material s Processing Technology,1998,80:2062212
    [58] Davey K,Ward M J. A Practical Method for Finite Element Ring Rolling Simulation Using the AL E Flow Formulation [J]. International Journal of Mechanical Sciences,2002,44:1652190
    [59] 吴江淮,许章泽. 辗钢车轮立式轧机辊系的调整方法. 铁道机车车辆工人, 2006,8:11~12
    [60] Davey K,Ward MJ. The Practicalities of Ring Rolling Simulation for Profiled Rings [J]. Journal of Materials Processing Technology,2002,125:6192625
    [61] Youngsoo Yea,Youngsoo Ko,Naksoo Kim,etal. Prediction of Spread,Pressure Distribution and Roll Force in Ring Rolling Process Using2Plastic Finite Element Method [J]. Journal of Materials Processing Technology,2003,140:4782486
    [62] 黄毅,韩静涛,贺毓辛. 整体火车车轮的生产. 重型机械,1997(3)
    [63] Shunji Omorietal. Experiment on the Roll Forming for Disk-Shaped Blanks,3rd International Conference on Rotary Metal working Process (ROMP). Kyoto,Japan,1984:311~320
    [64] U. Koppers. New Rolling Mill for Railway Wheel. Stah I Eisen,1993,113 (1):77~79
    [65] H-J. Marczinskin. Axial Closed-die Rolling (an economic hot-forming method due to high precision and flexibility). Journal of Materials Processing Technology,1992,34:495~502
    [66] 水恒勇,王豫. 高速列车辗钢车轮材料的发展. 热处理,2002,17(2):16~20
    [67] 尹桂江. 铁道车辆轮对及轴承的结构与检修. 中国铁道出版社. 1995,11:1~2
    [68] 俞展猷译. 铁路机车车辆轮对. 中国铁道出版社,1981(7):1~2
    [69] 张军. 基于有限元法的轮轨蠕滑理论研究. 大连理工大学,2003,5:53
    [70] 许小强,赵洪伦.过盈配合应力的接触非线性有限元分析[J].机械设计与研究,2003(1):33~35
    [71] 文汉云,莫易敏,周廷美,黄继雄,徐键生,李述松. DF 系列机车轮对轮箍加装扣环后的力学分析(一). 机械工程与自动化. 2005(2):1~2
    [72] 张红军,王伯铭. 离心力对高速动力车轮对效应的分析. 铁道学报. 1996,18(4): 25~30
    [73] 吴伟铨. 安全行车中车轮受力情况与制动距离探析. 科学技术. 2006(7):37
    [74] 俞展猷译. 铁路机车车辆轮对. 中国铁道出版社,1981(7):24~30
    [75] Jean-Claude TOURRADE. 高速与车轮优化设计. 国外铁道机车车辆,1993:117(3)
    [76] 赵少汴,王忠保.抗疲劳设计—数据与方法[M].北京:机械工业出版社,1997
    [77] 米彩盈,李芾.焊接转向架构架疲劳强度评定的工程方法[J].内燃机车,2002,(6)
    [78] 白忠喜,有限单元法基础教程,吉林,吉林科学技术出版社,1992
    [79] 赵震伟,王波,王霄峰等,应用有限元软件指导车轮的结构改进,机械设计与制造,2000,10:27~28
    [80] 韦倾. 车轮钢制轮辋的有限元疲劳分析. 广西大学硕士学位论文. 2007,5:45
    [81] 苏星译. 火车车轮的制造. 冶金工业出版社.1991,7:2~10
    [82] 黄庆学,申光宪,梁爱生, 陈占福. 轧机轴承与轧辊寿命研究及应用. 冶金工业出版社,2003:3~8
    [83] 赵志业. 金属塑性变形与轧制理论. 冶金工业出版社,1980,9:284~288
    [84] 吴江淮,许章泽. 辗钢车轮立式轧机辊系的调整方法. 铁道机车车辆工人,2006,8:11~13
    [85] 秦国庆. 火车车轮轧制应用技术开发及理论分析. 北京科技大学博士论文,2000,5:35
    [86] 王志诚. 火车车轮制造优化新工艺试验研究和数值模拟,清华大学博士论文,1993,11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700