用户名: 密码: 验证码:
白垩纪大陆科学钻探中黑红转变的分子微生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地质历史中,白垩纪被认为是温室气候的典型范例,发生了众多重大地质事件,其中黑色页岩和大洋红层为认识地球历史时期碳循环发生的重大变化提供了窗口。松辽盆地是我国大型白垩纪陆相含油气盆地,发育有完整的白垩纪陆相沉积纪录。白垩纪大陆科学钻探位于松辽盆地中央坳陷区,对整个白垩纪进行连续取芯。
     本文运用分子微生物学技术,对白垩纪大陆科学钻探工程中,在黑红转变界限附近采集的地质微生物样品进行分析,对其微生物群落组成、新陈代谢机制以及对周围环境的影响进行讨论,从分子生物学和地质学相结合的角度,讨论白垩纪松辽盆地黑红转变的过程,以及环境响应。
     主要实验方法包括:X射线荧光衍射;PLFA磷脂酸分析;16S rRNA基因分析技术和基因序列分析。
     根据研究目的,选取了两个岩芯样品B2-03和B2-05。B2-03取于1117m灰黑色泥岩,B2-05位于1215m暗红色泥岩,两样品中的生物量相当约为2×10~7cells/g。通过PCR(聚合酶链式反应)扩增得到细菌的16S rRNA,但缺失了古菌的16S rRNA。基因序列多样性分析发现,细菌的序列大多数属于低G+C%的G+菌和变形菌,嗜盐碱菌。在灰黑色样品B2-03中扩增得到的DNA序列较接近于水生金属硫酸盐还原菌,表示一种缺氧的还原环境;而红色样品B2-05中扩增得到的DNA序列更接近于水生金属氧化菌,指示一种富氧的氧化环境。通过X射线荧光衍射分析,在灰黑色样品B2-03中检测到了黄铁矿,指示还原环境,而红色样品B2-05在中测得了方沸石,指示氧化环境。通过岩相分析,说明灰黑色样品B2-03指示一种半深湖-深湖的还原环境,而红色样品B2-05指示一种深湖氧化环境。
     本文首次将分子微生物学技术运用到白垩纪陆相沉积的研究中,总结了一套行之有效的地质微生物学实验方法,并且取得的研究结果和白垩纪海相记录中的研究结果很相似,通过测量不同岩相岩芯样品中的生物量,对岩芯中保存的DNA进行16S rRNA基因多样性分析,发现不同岩相的岩芯样品中所含16S rRNA基因序列也不同,而且很好的对应了他们所在的地层的沉积环境,是很好的分子化石。
In the geological history, Cretaceous is regarded as the exemplar of Greenhouse climate, punctuated by dramatic events such as the mid-Cretaceous ocean anoxic events (OAEs) and the Cretaceous Oceanic Red Beds are thought to provide a clue for researching the carbon recycle during the geological history. Songliao Basin is the largest oil and gas producing basin in China., with the most integrated and continuous Cretaceous terrestrial strata and geological records in the world. Cretaceous Continental Scientific Drilling situates in the northern central of Songliao Basin and aimed to obtain the complete cores of Cretaceous.
     This thesis uses molecular microbiological method to analyze the black and red mudstones sampling from the Cretaceous continental scientific drilling, and discusses the causes and the influences to the environment from the biological and geological aspects.
     The main experimental means contain X-ray Diffraction analysis, phospholipid fatty acid analysis, 16S rRNA gene analysis and gene sequences diversity analysis. According to the object, two samples, B2-03 (dark black, 1117 m depth) and B2-05 (red, 1215 m depth) were selected for microbial analyses. The PLFA-determined biomass is similar between the two samples, i.e.,~2 x 10~7 cells/g. Polymerase chain reaction (PCR) was able to successfully amplify bacterial 16S rRNA gene, but failed to amplify any archaeal 16S rRNA gene. Bacterial clone sequences mostly belong to low G + C Gram positives and Proteobacteria. Based on relatedness of clone sequences to close relatives and to other clone sequences from known environmental conditions, the bacterial community composition in both samples appeared to be dominated with halophilic, and alkaliphilic microorganisms. In the black sample (supposedly more reducing), clone sequences were mostly related to aquatic metal and sulfate (sulfur) reducing bacteria, whereas in the red sample (supposedly more oxidizing), clone sequences were related to aquatic sulfite and sulfur oxidizing bacteria. By XRD analyzing, there is pyrite in the black sample, which is formed in more reducing environment, whereas analcime exists in the red sample which is formed in more oxidizing environment.
     This is the first time using molecular microbiological methods to the systematic study of cretaceous terrestrial sedimental records. This research founds a feasible geomicrobiological methods and obtains a similar result with cretaceous marine sedimental records. And these data are encouraging and appear to suggest that microbial record (fossil DNA and biomarker) may be used to reflect paleo-environmental conditions.
引文
Achim, Q., Torsen O., Hans, P.K., 等 . First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbio. 2002. 4(10): 603-611.
    Alvarez L.W., Alvarez W., Asaro F., 等 . Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science. 1980. 208: 1095-1108.
    Arthur M.A. North Atlantic Cretaceous black shales : The record at site 398 and a brief comparison with other occurrences [ C] Initial report s of t he Deep Sea Drilling Project . 1979. 47 :719-753.
    Arthur M.A, Sageman B.B. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth planet. Sci. 1994. 22: 499-551.
    Bachofen, R. Proceeding of the 1996 International Symposiumon Subsurface Microbiology. FEMS Microbiol. 1997. Rev. 20: 179-638.
    Bachofen R., Ferloni P., Flynn I. Review: microorganisms in the subsurface. Microbial. Res. 1998. 153: 1-22.
    Berner R.A. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci.. 1994. 294: 56-91.
    Bice K.L., Norris R.D. Possible atmospheric CO2 extremes of the warm mid- Cretaceous (late Albian-Turonian). Paleoceanography. 2003. 17(4): 10-70.
    Brain D.L., Myron T., Miriam W.,等. Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin. FEMS Microbiology Ecology. 2005. 54(2):167-177.
    Bralower T.J., Sliter W.V., Arthur M.A.,等. Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous). In Geophysical Monograph Series: The Mesozoic Pacific: Geology, Tectonics, and Volcanism, edited by M. Pringle, W.W. Sager, W.V. Sliter, and S. Stein, American Geophysical Union, Washington, DC. 1993. 5–37.
    Bréhéret, J.G. L’Aptien et l’Albien de la Fosse vocontienne (des bordures au bassin). évolution de la sédimentation et enseignements sur les événements anoxiques. Soc. 1997. Géol. Nord: 25.
    Broecker W.S. Will our ride into the greenhouse future be a smooth one? [ J ]. GSA Today. 1997. 7: 126.
    Calvert, S.E., Pedersen, T.F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology. 1993.113: 67-88.
    Carole J.N., Gordon W., Barry A.C., 等. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environmental Microbiology. 2004. 6(3): 274-287.
    Chandler D.P., Li S.M., Spadoni C.M., 等. A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediments. FEMS Microbiol. Ecol. 1997. 23: 131-144.
    Chapelle F.H., Zelibor J.L., Grimes D.J., 等. Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater. Water Resour. Res. 1987. 23: 1625-1632.
    Clarke L.J., Jenkyns H.C. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology. 1999. 27(8): 699-702.
    Crozier R.H., Agapov P.M., Pedersen K. Towards complete biodiversity assessment: an evaluation of the subterranean bacterial communities in the Oklo region of the sole surviving atural nuclear reactor. FEMS Microbiol. Ecol. 1999. 28: 325-334.
    David R.B., Liu Y., Zhao Z., 等. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)- Reducing Anaerobe from the Deep Terrestrial Subsurface. International Journal of Systematic Bacteriology. 1995. 45(3): 441-448.
    David W.R., Yoshiko F., Mark E.D., 等 . Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments in a Forearc Basin. Appl Environ Microbiol. 2002. 68(8): 3759-3770.
    Demaison,G., Moore, G.T. Anoxic environments and oil source bed genesis. Org. Geochem. 1980. 2:9-31.
    Demaison, G., Holck, A.J.J., Jones, R.W., 等. Predictive source bed stratigraphy: a guide to regional petroleum occurrence, North Sea Basin and North American continental margin. In: Proc. 11th World Petroleum Cong. Wiley, New York. 1984. 17-29.
    Dey D. K., Guha S. Determination of community structure through deconvolution of PLFA-FAME signature of mixed population. Biotechnol Bioeng. 2006. 24: 301-308.
    Erba E. Calcareous nannofossils and Mesozoic oceanic events. Marine Micropaleontology. 2004. 52: 85-106.
    Farrell M.A. Bacteria in anthracite coal.J.Bacterial. 1931. 23:155.
    Fish S.A., Thomas J., Shepherd T.J., 等. Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature. 2002. 417:432–436.
    Fisk M.R., Giovannoni S.J., Thorseth J.H. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science. 1998. 281: 978-980.
    Fry N.K., Fredrickson J.K., Fishbain S., 等. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microbiol. 1997. 63(4):1498-1540.
    Ghiorse W.C., Wilson J.T. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 1988. 33:107-172.
    Gold T. The deep, hot biosphere. Proc. Natl. Acad. Sci. 1992. 89: 6045-6049.
    Gordon W., Carole J.N., John C.F., 等. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. Journal of Microbiological Methods. 2003. 55:155-164.
    Gutzler D.S. Evaluating Global Warming: A Post-1990s Perspective. GSA Today. 2000. 10: 345-351.
    Haack S.K. Chemolithotrophic bacteria. In: Hall G.S.(eds.) Methods for the examination of organismal diversity in soils and sediments. CAB International, Cambridge, UK. 1994. 11-22.
    Handelsman J., Rondon M.R., Brady S.F., 等. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998. 5(10): R245-9.
    Hanson R.S., Hanson T.E. Methanotrophic bacteria. Microbiol. Rev. 1996. 60(2): 439-471.
    Hay W.W., DeConto R.M., Wold C.N. Climate: Is the past the key to future? [ J ]. Geologische Rundschau. 1997. 86: 4712491.
    Hay W.W., Deconto R.M. Comparison of modern and late Cretaceous meridional energy transport and oceanology [ C ] ∥Barrera E, Johnson C C, ed. Evolution of the Cretaceous Ocean2Climate System. Geological Society American Special Paper. 1999. 332: 2832300.
    Haywood A.M., Valdes P., Markwick P.J. Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research. 2004. 25: 303-311.
    Herrmann R.F., Shann J.F. Microbial Community Changes During the Composting of Municipal Solid Waste Microb Ecol. 1997. 133(1): 78-85.
    Hiroyuki K., Maki S., Kenji K. 等. Selective Phylogenetic Analysis Targeted at 16S Rrna Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments. Appl Environ Microbiol. 2006. 72(1): 21-27.
    Hu X, Jansa L., Wang C, 等. Upper Cretaceous Oceanic Red beds (CORB) in the Tethys: occurrence, lithofacies, age and environment. Cretaceous Research. 2005. 26: 3-20.
    Huber B.T., Hodell D.A., Hamilton C.P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bulletin. 1995. 107(10): 1164-1191.
    Huber B.T., Norris R.D., MacLeod K.G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology. 2002. 30(2): 123-126.
    Inagaki F., Ken T., Hisako H., 等. Distribution and phylogenetic diversity of the subsurface microbial community in a Janpanese epithermal gold mine. Applied And Environmental Microbiology. 2003. 69(7): 307-317.
    Inagaki F., Okada H., Tsapin A.I., 等. The Paleome: A Sedimentary Genetic Record of Past Microbial Communities. Astrobiology. 2005. 5(2): 141-155.
    Ian M.H., Martin D.J., Steve R.L. Biological activity in the deep subsurface and the original of heavy oil. Nature. 2003. 20(426): 344-352.
    Jenkyns H.C. Cretaceous anoxic events: from continents to oceans. J. Goel. Soc., London. 1980. 137: 171-188.
    Jenkyns H.C., Wilson P.A. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: relics from a greenhouse. Earth. Am. J. Sci. 1999. 299: 341-392.
    Jimenez T., Udo J., Sylvia S. Molecular Analyses of Novel Methanotrophic Communities in Forest Soil That Oxidize Atmospheric Methane. Applied And Environmental Microbiology. 2000. 66(5): 1801-1808.
    Kazem K., Derek R.L. Extending the Upper Temperature Limit for Life. Science. 2003. 301(5635): 934.
    Ken T., Tetsushi K., Fumio I. Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol. 2001. 67(8): 3618-3629.
    Kvenvolden K. Natural gas hydrate occurrence and issues. Sea Technol. 1995.36: 69-74.
    Langworthy, T.A. Lipids of archaebateria. In The Bacteria. Vol. VIII. Eds. C.R. Woese and R.S. Wolfe. Academic Press, New York. 1985. 459-497.
    Larson R.L. Latest pulse of the Earth: Evidence for a mid-Cretaceous superplume. Geology. 1991. 19: 547-550.
    Leckie R.M., Bralower T.J., Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography. 2002. 17 (3): 10.1029/2001PA000623.
    Lipman C.B. Living microorganisms in ancient rocks.J.Bacterial. 1931. 22:183.
    Mausmi P.M., David A.B., John A. B. Phylogenetic Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of the Juan de Fuca Ridge Applied and Environmental Microbiology. 2003. 69(2): 960-970.
    Miller K.G., Wight J.K., Fairbanks R.D. Unlocking the ice house: Oligocene2Miocene oxygen isotopes, eustacy, and margin erosion [J]. Journal of Geophysical Research. 1991. 96: 6 82926 848.
    Naganuma T. Search for life in deep biosphere. Biol Sci Space, 17(4): 310.
    Norris R. D., Ursula P. Carbon cycling and chronology of climate warming during the Palaeocene/ Eocene transition. Nature. 1999. 410: 775-778.
    Onstott T.C., Phelps T.J., Colwell F.S., 等. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol. 1999. 14: 353-383.
    Pedersen K., Ekendahl S. Distribution and activity of bacteria in deep granitic groundwater of southeastern Sweden. Microb. Ecol. 1990. 20:37-52.
    Pedersen K. The deep subterranean biosphere. Earth-Sci. Rev. 1993. 34:243-260.
    Pedersen K., Arlinger J., Ekendahl S., 等. 16S rRNA gene diversity of attached and unattached groundwater bacteria along the access tunnel, Sweden. FEMS Microbiol. Ecol. 1996. 19: 249-262.
    Pedersen K. Microbial life in deep granitic rock. FEMS Microbiol Rev. 1997. 20:399-414.
    Pedersen K., Ekendahl S., Tullborg E.L., 等. Evidence of ancient life at 207m depth in a granitic aquifer. Geology. 1997. 25(9): 827-300.
    Pedersen K. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiology Letters. 2000. 185: 9-16.
    Robert T.A., Francis H.C., Derek R.L. Evidence Against Hydrogen-Based Microbial Ecosystems in Basalt Aquifers Science. 1998. 281: 976-977.
    Schlanger S.O., Jenkyns H.C. Cretaceous oceanic anoxic events: Cause and consequence J.Geol. 1976. 55: 179-184.
    Schlanger S.O., Arthur M.A., Jenkyns H.C. The Cenomanian-Turonian oceanic anoxic events, Stratigraphy Ⅰ and distribution of organic carbon-rich beds and the marine δ13C excursion. In: Brooks J, Fleet A J, eds. Marine petroleum source rocks. Geological Society Special Publications. 1987.26: 371-399.
    Skelton P.W. The Cretaceous World. Cambridge University Press. 2003. 1-350.
    Stackebrandt E., Goebel B.M. Taxononmic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bateriol 1994. 44: 846-849.
    Stevens T.O., Mckinely J.P. Lithoautotrophic microbial ecosystems in deep basalt aquifers, Science. 1995. 270:450-454.
    Stroes G.S., Sargent F.P. The Canadian approach to microbial studies in nuclear waste management and disposal. J. Contam. Hydrol. 1998. 35: 175-190.
    Szewzyk U., Szewzyk R., Stenstrom T.A. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Swenden. Proc. Natl. Acad. Sci. USA. 1994. 91: 1810-1813.
    Tarduno J., Brinkman D.B., Renne P.R., 等. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates[J]. Science. 1998. 282: 2241-2244.
    Thompson J.D., Gibson T.J., Plewnia F. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997. 25: 4876-82.
    Vreeland R.H., Piselli J., Donnough S., 等 . Distribution and Diversity of halophilitic bacteria in a subsurface salt formation. Extremophiles. 1999. 2: 321-331.
    Wan Xiaoqiao ,Massimo Sarti. Cretaceous oceanic red beds and land ocean interaction J. Cretaceous Research. 2005. 26 (1): 1-2.
    Wang C, Huang Y, Hu X, 等 . Cretaceous oceanic red beds: Implications for paleoclimatology and paleoceanography. Acta Geologica Sinica. 2004. 78: 873-877.
    Wang Chengshan, Hu Xiumian, Sarti Massimo, 等. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research. 2005. 26: 21-32.
    Wang Pinxian. Deep sea research and Earth sciences in new century[ C ] ∥Lu Yongxiang, ed. Overwiew and Perspective of Sciences and Technology in Past 100 Years. Shanghai: Shanghai Education Press, 2000: 1912211. [汪品先. 深海研究和新世纪的地球科学[C ] ∥路甬祥主编. 百年科技回顾与展望———中外著名学者学术报告. 上海:上海教育出版社. 2000: 1912211.
    Webster G., Watt L.C., Rinna J., 等. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediments enrichment slurries, Environ. Microbiol. 2006. 8(9): 1575-1589.
    Wellsbury, P., Goodman, K., Barth T., 等. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature. 1997. 388: 573-576.
    Wilson P.A., Norris R.D., Cooper M.J. Testing the mid-Cretaceous greenhouse hypothesis using "glassy" foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology. 2002. 30: 607-610.
    Woese C.R., Kandler O., Wheelis M.L. Towards to a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucaria. Proc. Natl. Acad. Sci. USA. 1990. 87: 44576-44579.
    Yoshikazu K., Hisaya K., Manabu F. Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan). FEMS Microbiology Ecology. 2005. 52(3): 297-305.
    Zhang Gengxin, Dong Hailiang, Jiang Hongchen, 等. Unique Microbial Community in Drilling Fluids from Chinese Continental Scientific Drilling. Geomicrobiology Journal. 2006. 23:499–514,
    Zhou J., Liu S., Xia B., 等 . Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments Journal of Applied Microbiology. 2001. 90: 96-105.
    陈建强,周洪瑞,王训练.沉积学及古地理教程.北京:中国地质大学(北京)出版社,2003.
    陈骏,姚素平. 地质微生物学及其发展方向. 高校地质学报, 2005. 11(2):154 – 166.
    方大钧,叶得泉. 中国松辽盆地白垩纪岩石磁化率、剩磁强度与古气候意义.地球物理学报, 1989. 32(1):111-114.
    高瑞祺,张莹,崔同翠. 松辽盆地白垩纪石油地层.北京:石油工业出版社,1994.
    高瑞祺,蔡希源. 松辽盆地油气田形成条件与分布规律. 北京:石油工业出版社,1997
    高瑞棋,赵传本等.松辽盆地白垩纪石油地层孢粉学.北京:地质出版社,1999.
    高有峰,王璞珺,王成善,任延广,王国栋,刘万洙,程日辉. 松科 1 井南孔选址、岩心剖面特征与特殊岩性层的分布. 地质学报. 2008. 82(5)(待刊).
    胡修棉. 藏南白垩系沉积地质与上白垩统海相红层—大洋富氧事件. 博士论文: 成都理工大学. 2002.
    胡修棉,王成善. 白垩纪大洋红层: 特征、分布与成因.高校地质学报, 2007. 13(1):01–13
    黄清华,郑玉龙,杨明杰等. 松辽盆地白垩纪古气候研究.微体古生物学, 1999. 16(1):95-103.
    潘兆橹. 结晶学及矿物学.北京:地质出版社,1994.
    王成善, 胡修棉. 白垩纪世界与大洋红层. 地学前缘, 2005. 12 (2):11-21.
    王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究. 地球科学进展, 2006. 21(7):68-72.
    王国栋,程日辉,于民凤等. 沉积物的矿物和地球化学特征与盆地构造、古气候背景.吉林大学学报(地球科学版),2006. 36(2):202-206.
    王远亮,夏颖,董海良等. 中国大陆科学钻探(CCSD)地下岩心样品中的细菌群落分析.岩石学报,2005. 21(02):0533-39.
    叶得泉,黄清华等. 松辽盆地白垩纪介形类生物地层学.北京:石油工业出版社,2002.
    张立平,王东坡. 松辽盆地白垩纪古气候特征及其变化机制.岩相古地理,1994. 14(1):11-16.
    张振国,方念乔,高莲凤,桂宝玲,崔木花. 白垩纪黑色页岩与大洋红层:缺氧到富氧的过程与机制.海洋地质与第四纪地质. 2007. 27(3): 69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700