用户名: 密码: 验证码:
微型制冷系统模拟与微通道冷凝器实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前设备和系统的微小型化已经在很多学科中得到广泛关注,蒸汽压缩式制冷系统体积紧凑、经济性好,微型蒸汽压缩制冷系统有深远的应用背景。
     本文首先通过局部仿真对系统各部件进行分别模拟,分析了部件在给定工况下的运行结果,以及各性能参数在不同工况下的变化情况,最后利用软件制作可视化界面。在建立压缩机、微通道冷凝器、微通道蒸发器和节流短管仿真模型的基础上,采用顺序模块算法,根据能量方程、动量方程和连续性方程将各部件按照循环顺序耦合,建立微型蒸汽压缩式制冷系统的稳态仿真模型。并预测了在外界工况变化时,系统主要性能参数(制冷量、COP、过热度、过冷度等)的变化情况。以系统优化为目的,对微型蒸汽式制冷系统进行部件及过程火用分析,以计算中一设计结果为例进行计算,分析火用损失最大的环节,并对实际应用中可能出现的压缩机压比小、热漏等问题进行优化分析。
     为了深入研究微通道换热器的流动及传热情况,本文进行了微通道冷凝器的实验,微通道尺寸0.15mmX0.5mm,在实验条件下,总散热量约为4W。实验中采用工质HFC134a流过微通道侧,冷却部分采用控制温度和流量的水。另外,通过透明盖板对HFC134a在换热器中的冷凝流动过程进行了观察和分析。
Nowadays, the microminiaturization of equipments and systems has attracted a great deal attentions along with the development of MEMS (Micro Electro-Mechanical System). Vapor-compression type refrigeration system is a good candidate for micro-refrigeration systems, which has many advantages, such as low flow rate, small volume, high COP and so on.
     First of all, in this paper, we established the simulation models for all components in a micro refrigeration system, and obtained all their simulation results by programmed codes, including the working performances under design working condition and the performance variation on other working conditions. Then, the steady micro vapor compression type refrigeration system simulation model was designed by ordering arithmetic according to the balance of the govern equations: energy equation, momentum equation and continuous equation. Finally, several visible executable interfaces were obtained, and the system performance under different working conditions was predicted.
     For optimization of the system, we analyzed all the exergies about components in the system, and find out which component has the maximum energy loss. Finally, we presented optimizations methods for the thermal-leaking and low compressing ratio of the micro-compressor.
     In order to understand the flow and heat transfer character of HFC134a in micro-channel condenser deeply, we did the responding experiment with micro-channel size of 0.15X0.5mm. Under the condition of experiment, the total thermal dissipation is about 4W. Finally, we observed the flow process of the condensation of HFC134a in the micro-channel.
引文
[1] 过增元.国际传热研究前沿——微细尺度传热. 2000, 30(1): 1-6
    [2] 陈信,袁修干. 人-机-环境系统工程生理学基础. 北京航空航天大学出版社.北京:2001.175
    [3] Wegeng RS, MK Drost, and DL Brenchley. Process Intensification Through Miniaturization or Micro Thermal and Chemical Systems in the 21st century. The 3rd International Conference on Microreaction Technology, 1999.
    [4] 姜培学,李勐.微型换热器的试验研究[J].压力容器,2003 年,20 卷,2 期:8-12
    [5] 丁国良,张春路. 制冷空调装置仿真与优化. 北京:科学出版社,2001.
    [6] 丁国良,张春路. 制冷空调装置智能仿真. 北京:科学出版社,2002.
    [7] Mark A. Shannon, INTEGRATED MESOSCOPIC COOLER CIRCUITS (IMCCS) 1999. SME International Mechanical Engineering Congress and Exhibition, Nashville, TN, Nov. 15-20, 1999, Proceedings of the ASME, Advanced Energy System Division , AES-Vol. 39, p. 75-82.
    [8] 钟晓辉. 用于个人冷却的微型制冷系统研究现状. 暖通空调. 2007 年第 37 卷第 1 期
    [9] Drost M K, Friedrich M. Miniature heat pumps for portable and dist ributed space conditioning applications[C]. AIChE 1997 Spring National Meeting, 1997: 1271 - 1274
    [10] Wegeng R S, Drost M K, Brenchley D L. Process intensification through miniaturization or micro thermal and chemical systems in the 21st century[C]. The 3rd International Conference on Microreaction Technology, 2000:2 - 13
    [11] Drost M K, Friedrich M, Martin C, et al. Mesoscopic heat2actuated heat pump development. ASME IMECE Conference, 1999:9 – 14
    [12] Drost M K, Friedrich M, Martin C, et al. Recent development s in microtechnology2based chemical heat pumps[C]. The 3rd International Conference on Microreaction Technology, 2000:394 - 401
    [13] Drost M K, Friedrich M. A microtechnology based chemical heat pump for portable and dist ributed space conditioning applications[C]. The 2nd Int Conf on Microreaction echnology, 1998:318
    [14] 马国远,李红旗. 旋转压缩机. 机械工业出版社. 北京,2003:775
    [15] Stephen D. Senturia著,刘泽文 王晓红 黄庆安等译,微系统设计. 电子工业出版社,2004年11月
    [16] Jensen K F1Microchemical systems: status, challenges, and opport unities1 AIChE J1, 1999 , 45 (10) : 2051 —2054
    [17] Chen Guangwen (陈光文) , Yuan Quan (袁权) . Micro-chemical Technology Journal of Chemical Industry and Engineering ( 化工学报) , 2003, 54 ( 4 ): 427-439
    [18] Chen Guangwen, Yuan Quan, Li Shulian. Micro-channel reactor for methanol autothermalreforming. Chinese Journal of Catalysis (催化学报), 2002, 23(6): 491-492
    [19] Ehrfeld W, Hessel V, Lêwe H. Microreactors: New Technology for Modern Chemistry. New York: Wiley2vch, 2000
    [20] Chen Guangwen, Yuan Quan, Li Hengqiang, Li Shulian1 CO selective oxidation in a microchannel reactor for PEM fuel cell1 Chem1 Eng1 J1, 2004, 101( 1-3 ) : 101-106
    [21] Hessel V, Kolb G1 Micro2st ructured reactors for gas phase reactions1 Chem1 Eng1 J1 , 2004 , 98: 1-38
    [22] Stephen D. Senturia著,刘泽文 王晓红 黄庆安等译,微系统设计. 电子工业出版社,2004年11月
    [23] Ehrfeld W, Gêrtner C, Golbig K, et al. Fabrication of components and systems for chemical and biological microreactors [C]. Microreaction Technology-Proceedings of the First International Conference on Microreaction Technology, 1997:72- 90
    [24] Swift G W, Migliori A, Wheatley T C. Micro channel cross flow fluid heat exchanger and method for its fabrication, US Patent 4, 516, 632, 1985
    [25] Subbojin V I, Haritonov V V. Thermophysics of cooled laser mirrors. Teplofizika Vys. Temp., 1991, 29 (2): 365-375
    [26] S. Nukiyama, The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure, J. Jap. Soc. Mech. Eng. 37 (1934) 367–374 (Translated in Int. J. Heat Mass Transfer 9 (1966) 1419–1433).
    [27] J.R. Thome, Boiling of new refrigerants: a state-of-the-art review, Int. J. Refrigeration 19 (1996) 435–457.
    [28] M.H. Saidi, M. Ohadi, M. Souhar, Enhanced pool boiling of R-123 refrigerant on two selected tubes, Appl. Thermal Eng. 19 (1999) 885–895.
    [29] S.S. Hsieh, T.Y. Yang, Nucleate pool boiling from coated and spirally wrapped tubes in saturated R134a and R600a at low and moderate heat flux, J. Heat Transfer 123 (2001) 257–270.
    [30] J.H. Kim, K.N. Rayney, S.M. You, J.Y. Pak, Mechanism of nucleate boiling heat transfer enhancement from microporous surfaces in saturated FC72, J. Heat Transfer 124 (2002) 500–506.
    [31] T.N. Tran, M.W. Wambsganss, M.C. Chyu, D.M. France, A correlation for nucleate flow boiling in small channels, in: R.K. Shah (Ed.), Compact Heat Exchanger for the Process Industries, Begell House, New York, (1997) pp. 353–363.
    [32] T. Tran, M. Wambsganss, D. France, Small circular and rectangular channel boiling with two refrigerants, Int. J. Multiphase Flow 22 (1996) 485–498.
    [33] Wahib Owhaib, Claudi Mart_?n-Callizo, Bj€orn Palm,Evaporative heat transfer in vertical circular microchannels. Applied Thermal Engineering 24 (2004) 1241–1253
    [34] 王涛,胡学功,唐大伟,微通道-微槽群中间换热器特性实验研究,期强激光与粒子束,第19卷,第4期,2007年
    [35] Shizuo Saitoh, Hirofumi Daiguji, Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes, International Journal of Heat and Mass Transfer 48(2005)4973-4984
    [36] A. Vardhan, W. E. Dunn, Heat Transfer and Pressure Drop Characteristics of R-22, R134a and R-407C in Micro-channel Tubes, ACRC TR-133, November 1997
    [37] 葛云亭,彦启森,彭雄兵,制冷空调系统仿真数学模型的理论与实验研究,制冷学报,4/1995年
    [38] 张春路,丁国良,制冷系统稳态仿真算法研究,上海交通大学学报,第36卷第11期,2002年11月
    [39] M. Ghajar, H. Darabi, N. Crews Jr. A HYBRID CFD-MATHEMATICAL MODEL FOR SIMULATION OF A MEMS LOOP HEAT PIPE. Proceedings of IMECE04, 2004 ASME International Mechanical Engineering Congress and Exposition, November 13-20, 2004, Anaheim, California USA
    [40] Liao X S, Liu Y, Ning YQ, et al. The optimal design of structure parameter for micro channel heat sink[C]. Proceedings of SPIE The International Society for Optical Engineering,2002, 4914:181 – 186
    [41] 饶政华,廖胜明. 二氧化碳微通道气体冷却器的数值仿真与性能优化,化工学报,第56卷,第9期,2005年9月,1721-1726
    [42] 黄冬平,梁贞潜,丁国良,张春路,基于模型的二氧化碳微通道气体冷却器性能分析,化工学报,第53卷,第8期,2002年8月,832-836
    [43] 陆平,陈江平,微通道平行流气冷器流量分配的数值模拟,应用科学学报,第25卷,第3期,2007年5月
    [44] Stief T, Langer O U, Schubert K. Numerical investigations of optimal heat conductivity in micro heat exchangers [ J ]. Chemical Engineering and Technology, 1999, 22 (4):297-303
    [45] Jian Min Yin, Clark Y. Bullard, Predrag S. Hrnjak, R-744 Gas cooler model development and validation, international journal of refrigeration 24 (2001) 692-701
    [46] Y. P. Peles and S. Haber. A steady state, one dimensional, model for boiling two phase flow in triangular micro-channel International Journal of Multiphase Flow, Volume 26, Issue 7, 1 July 2000, Pages 1095-1115
    [47] J.M.Saiz Jabardo, W. Gonzales Mamani, M.R. Ianella, Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor, International Journal of Refrigeration 25 (2002) 1157-1172
    [48] A.C. Kirkwood, C.W. Bullard, Modeling, Design, and Testing of a Microchannel Split-System Air Conditioner, ACRC TR-149 (March 1999)
    [49] M. Ghajar J. Darabi N. Crews Jr. A HYBRID CFD-MATHEMATICAL MODEL FOR SIMULATION OF A MEMS LOOP HEAT PIPE MEMS TOC. November 13-20, 2004, Anaheim, California USA
    [50] X.N. Jiang, Z.Y. Zhou, J. Yao, Y. Li, X.Y. Ye, Micro-fluid flow in microchannel, in: Proceedings of Transducers ’95, Stockolm, Sweden, 1995, pp. 317–320
    [51] X.N. Jiang, Z.Y. Zhou, X.Y. Huang, C.Y. Liu, Laminar flow through microchannels used formicroscale cooling systems, in: Proceedings of 97 IEEE/CPMT Electronic Packaging Technology Conference, 1997, pp. 119–122.
    [52] C.P. Tso, S.P. Mahulikar, Experimental verification of the role of Brinkman number in microchannels using local parameters, Internat. J. Heat Mass Transfer 43 (2000) 1837–1849.
    [53] W. Qu, G.M. Mala, D. Li, Heat transfer for water flow in trapezoidal silicon microchannels, Internat. J. Heat Mass Transfer 43 (2000) 3925–3936.
    [54] G.P. Celata, M. Cumo, M. Guglielmi, G. Zummo, Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube, in: G.P. Celata, et al. (Eds.), Proceedings of
    [55] 曹彬, 陈光文, 袁权.逆流式微通道换热器设计与操作特性分析. 化工学报. Vol.156,No.15 774-778
    [56] Collier J G, Convective Boiling and Condensation, 3rd edition, Oxford: Claredon Press, 1994.
    [57] 鲁钟琪.两相流与沸腾传热.北京:清华大学出版社,2002.
    [58] McAdams, W. H. et al. ‘Vaporization inside horizontal tubes-II-Benzene-oil mixtures’. Trans. ASME. 64,193 (1942)
    [59] S.B. Choi, R.F. Barron, R.O. Warrington, Fluid flow and heat transfer in microtubes, in: Micromechanical Sensors, Actuators and Systems, ASME DSC, vol. 32, Atlanta, GA, 1991, pp. 123–134.
    [60] P. Wu, W.A. Little, Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators, Cryogenics 24 (1984) 415–420.
    [61] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社. 2001.
    [62] S. W. Churchill. Friction factor equation spans all fluid regimes. Chem. Eng., pp: 91-92.
    [63] 魏志勇.房间空调器形呢国内预测方法的研究与应用,硕士论文,上海:上海交通大学动力与能源工程学院,1999
    [64] 侯虞钧,唐宏青,马丁-侯状态方程向液相发展,《化工学报》1981/32/01 P1-10
    [65] C. Y. Chan and G. G Haselden. Computer-based refrigerant thermodynamic properties. Part 1: Basic equations International Journal of Refrigeration, Volume 4, Issue 1, January 1981, Pages 7-12
    [66] C. Y. Chan and G. G Haselden. Computer-based refrigerant thermodynamic properties. Part 2: Program listing International Journal of Refrigeration, Volume 4, Issue 2, March 1981, Pages 52-60
    [67] C. Y. Chan and G. G Haselden. Computer-based refrigerant thermodynamic properties. Part 3: Use of the program in the computation of standard refrigeration cycles International Journal of Refrigeration, Volume 4, Issue 3, May 1981, Pages 131-134
    [68] 朱明善. HFC-134a 热物理性质 : 绿色环保制冷剂.科学出版社,1995.
    [69] 张熙民,任泽霈,梅飞鸣. 传热学. 北京:中国建筑工业出版社,1998.
    [70] 丁国良,张春路,赵力. 制冷空调新工质热物理性质的计算方法与实用图表. 上海:上海交通大学出版社,2003.
    [71] Fukano T,Kariyasaki A, Kagawa M. Flow patterns and pressure drop in isothermal gas-liquid flow in a horizontal capillary tube. ANS Proceeding, 1989 National Heat Transfer Conference, ISBN 0-89448-149-5, ANS,1989,4: 153-161.
    [72] Schlichting, H., 1968. Boundary Layer Theory. McGraw-Hill, New youk, p.433
    [73] Measurement of friction factors for the flow of gases in very fine channels used for miniature Joule-Thomson refrigerators.
    [74] Pfahler, J.N., Harley, J., Bau, H.H. and Zemel, J., Liquid and gas transport in small channels. In ASME proceedings, DSC, Vol.19, Winter Annual Meeting, 1990, pp. 149-157.
    [75] choi, S. B., Barron, R.F. and Warrington, R. O., Fluid flow and heat transfer in microtubes. Micromechanical sensors, actuators and systems (ed. D. Cho). AMSE DSC, 1991, 32, 303-314.
    [76] H. L. Mo, Characteristics of friction factor of gas flowing through small rectangular ducts, Cryogenics 38(1998), 869-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700