用户名: 密码: 验证码:
轿车刚弹耦合建模及行驶平顺性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是结合课题组承担的科研项目“轿车行驶平顺性指标分解研究”进行的,在论文中分别考虑了柔体车身模态频率和悬架参数对轿车行驶平顺性的影响。研究在进行轿车产品车开发时通过合理匹配与控制车身振动性能和悬架参数来提高轿车行驶平顺性的方法。
     本文运用ADAMS/Car软件,建立了包括前后悬架、转向系、横向稳定杆、柔体车身在内的轿车刚弹耦合虚拟样机模型。以驾驶员座椅地板的垂向加权加速度均方根值作为评价指标,对轿车在B级路面上进行了行驶平顺性仿真分析;研究了不同柔体车身模态频率对轿车行驶平顺性的影响;使用正交试验设计的方法对轿车悬架参数进行了优化设计,提高了轿车的行驶平顺性。
     本文依据国际标准ISO 2631《人体承受全身振动的评价指南》中规定的平顺性评价方法,对轿车悬架参数采用初始方案和优化方案的平顺性仿真结果进行对比分析。分析结果表明:采用优化后的轿车悬架参数,可以有效的降低驾驶员座椅地板的垂向加权加速度均方根值,提高了轿车的行驶平顺性,验证了优化结果准确性和可行性。
With the support of team-oriented commitment to the actual production of the horizontal projects“Rigid-elastic Coupling Modeling and Ride Comfort Analysis for a Car”This paper regards a car as the object of study, and has done the deep study like rigid-elastic coupling modelling, ride comfort analysis, experimental modal analysis of body and car suspension parameter optimization to improve the ride comfort of the car, Reference for the new car in the design stage to comfort design and matching. The study of project has an important practical significance to increase the autonomy of the development and scientific technological innovation in china.
     Firstly, by using the ADAMS/Car software this paper has built Rigid-elastic Coupling Modeling including front/rear suspension, horizontal stabilizer bar, steering system, power train, tires and flexible body. And the geometric parameters, physical parameters, mechanical parameters of modeling are the same as the real vehicle data. Horizontal stabilizer model is established by Nastran software and then imported into ADAMS software to generate flexible modal. Moreover, on the basis of the real vehicle body modal test data the flexible body model is built in ADAMS/view.
     Secondly, via studying the random road generated method, this paper has built the B-class roads for the ride comfort analysis. By using the driver seat vibration rms acceleration values as evaluation indexes, this paper has also done the ride comfort of simulation analysis under different speed conditions. The simulation results show that: people would feel uncomfortable at above 80 km / h, but in contrast people would feel better at other speed. In addition, the simulation results meet the requirements of the national standards GB/T4970-1996, verify the correctness of the virtual prototype model and shows that the ride comfort quality of car is better.
     Again, this paper has analyzed the frequency of the body which affect vehicle ride comfort, and under different modal frequency of the body conditions this paper has done the ride comfort simulation analysis at 60 km/h ride speed in the B-class random road. The simulation results show that: at the frequency of 27.06 Hz, The maximum driver seat floor vibration RMS acceleration is 0.2626 ms-2; at the frequency of 33.53Hz, the minimum is 0.2186 ms-2 reduced by 16.76%. Through this analysis, elastic body of the vehicle has a significant effect on ride comfort, therefore, when doing analysis of vehicle ride comfort, the vehicle should not be regarded as rigid body, the flexible body impact on ride comfort of the vehicle must be considered to improve the accuracy of the simulation.
     Finally, by using four design variables of front/rear suspension stiffness and damping as the facts this paper has done the orthogonal experimental design of suspension Parameter using L9(34). In accordance with the ISO2631: 1997E of vehicle ride comfort evaluation methods, in this paper, under the unladen 60 km / h condition the driver seat to the floor of the vibration rms is regarded as the evaluation value. The Matlab software is used in the programming calculating process of the driver seat to the floor of the vibration rms value, then the ADAMS software curve the simulation results which are exported in the form of discrete points and imported into Matlab software to calculate the driver seat to the floor of the vibration rms and give the best car suspension parameters. In order to test the reasonableness of optimized program, this paper has also done the simulation analysis of ride comfort of the vehicle by adopting the original and optimized parameters of vehicle suspension under different speeds condition, and the comparison of the before and after simulation analysis results show the the feasibility and effectiveness of the optimization program.
引文
[1]余志生.汽车理论[M].(第3版).北京:机械工业出版社,2000.10.
    [2]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报.2004(3):16-19.
    [3] Thomas D.Gillespie著,赵六奇译.车辆动力学基础[M].北京:清华大学出版社.2006.
    [4] D.E.Newland.General Liner Theory of Vehicle Response to RandomRoad Roughness[J]. SAE, 1995, 59:25-60.
    [5]檀润华,陈鹰等.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报.1998(2):68-174.
    [6]唐光武等.路面不平度的数学模型及计算机模拟研究[J].中国公路学报.2000(5):35-74.
    [7]张永新等.路面特性统计模拟方法的研究[J].西安公路交通大学学报.1995(7):24-38.
    [8]国家标准.车辆振动输入—路面平度表示方法.GB7031-86.
    [9] Richard A Lee,Fred Pradlo.Analytical analysis of human vibration[J].SAE:680091.
    [10] Janeway.Human vibration tolerance criteria and application to ride evolution[R]. SAE:750075.
    [11] International Standards Organization.Guide for the evaluation of human exposure to whole body vibration.ISO 2631.1974.
    [12]孙建成.车辆行驶平顺性的预测及研究[J].汽车研究与开发.1998(1):28-32.
    [13]高树新.汽车行驶平顺性评价述评[J].汽车技术.1995(12):16-17.
    [14] H B Pacejka and E Bakker.The magic formula tire model[J].Vehicle System Dynamics. 1992(21):1-8.
    [15]杜子学.基于乘用车性平顺性分析的新指标—汽车综合振动舒适度[J].西南交通大学学报.2000(2):152-154.
    [16] ISO2631-1(1997).Evaluation of human exposure to whole-body vibration Part1:General requirements.1997.05.
    [17]中华人民共和国国家标准.汽车平顺性随机输入行驶试验方法.GB/T4970-1996.
    [18]中华人民共和国国家标准.汽车平顺性脉冲输入行驶试验方法.GB/T5902-86.
    [19]李向华.汽车振动仿真[D].武汉:武汉理工大学.2001.
    [20]章一鸣,张锡清.车辆悬挂系统优化设计[J].汽车工程.1984(10):35-58.
    [21]谢卫国,汪红心.半挂汽车列车平顺性分析[J].汽车工程.1993(4):10-15.
    [22]林逸,吴海波.汽车座椅计算辅助设计方法探讨.汽车技术[J].1997(6):33-63.
    [23]刘少军,钟掘.最优预见控制设计及在汽车主动悬架控制中的应用[J].中南工业大学学报.1997(1):15-20.
    [24]段志信,冯志勇.多种工况下汽车悬挂参数的优化[J].内蒙古工业大学学报.1998(7):13-17.
    [25]罗雁,卫修敬.车辆悬挂系统的能控性能观测性分析及仿真[J].江苏理工大学学报.2000(12):24-55.
    [26]于国非,艾维权.基于ADAMS/CAR二次开发模块研究汽车平顺性[J].汽车技术.2005(3): 12-15.
    [27]张德超,杨亚娟.基于ADAMS/CAR的悬架运动学/动力学分析[J].天津汽车.2008(6):45-48.
    [28]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社.1989.3.
    [29]洪嘉振,蒋丽忠.柔性多体系统刚—柔耦合动力学[[J].力学进展.2000(1):15-20.
    [30]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社.1996.3.
    [31]郑建荣. ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社.2001.
    [32]李军,邢俊文,覃文洁等.ADAMS实例教程[M].北京:北京理工大学.2002.5
    [33]张越今.多体动力学在轿车动力学仿真及优化研究中的应用[D].北京:清华大学.1997.11.
    [34] Brady,F John.Computer simulation of viscous suspension[J].Chemical Engineering Science.2001,56(9):2921-2926.
    [35]刘浩,何辉,张立军.基于ADAMS的麦弗逊式悬架的结构优化分析[[J].辽宁工学院学报.2000(5):357-359.
    [36] Chalasani R.M.Ride performance of active suspension system—Part 2:Comprehensive analysis based on a full-car model,ASME Symposium onSimulation and Control of Ground Vehicle and transportation Systems,AMD-Vo1.80,DSC-Vo1.2.1986.
    [37] Luca Piancastelli,Paul Barnard,Nick Powell. ADAMS custom interface for powertrain mounting system design[C].ADAMS user conference,November 2000.
    [38] Evans,R.D..Propertiesoftires affecting riding,steering,and hand-ling.Journal of the Society of Automotive Engineers 36(2):41.
    [39]包继华.汽车整车多体系统动力学建模和仿真.计算机仿真[J].2004(1):53-56.
    [40] Sayers M W,S M Karamihas.The Little Book of Profiling.University of Michigan Transportation Research Institute. SAE, 2000, 28:37-40.
    [41] Sayers M W.On the Calculation of International Roughness Index from Longitudinal Road Profile.Transportation Research Record 1501.1995,1-12.
    [42]高树新.汽车行驶平顺性评价述评.汽车技术[J].1995(12):1.
    [43]杜子学.基于乘用车性平顺性分析的新指标—汽车综合振动舒适度.西南交通大学学报[J]. 2000(2):152-154.
    [44]蔡章林.动力学仿真技术在悬架和整车开发中的应用研究[D].吉林:吉林大学.2004.5.
    [45]王国权.车辆平顺性虚拟试验技术的研究[D].北京:中国农业大学.2002年.
    [46]王明容,宋永增,甄子健,任尊松.汽车平顺性建模与仿真分析[J].北京交通大学. 1003-5060 (2005) 04-0346-05.
    [47]王其东,乔明侠,梅奋永.汽车随机路面输入平顺性的仿真分析[J].汽车工程.1005-2550(2004)02-01-04.
    [48]雷良育.基于多体系统的汽车平顺性仿真分析[J].汽车工程.1672-0032 (2006)04-0010-04.
    [49] Joseph S Lombardo,Edward Mihalakscott,OsborneR.Collaborative Virtual Prototyping. Johns Hopkins APL Technical Digest,1996,17(3): 295-304.
    [50] Bipin Chadha,John Welsh. Next-Generation Architecturefor Virtual Prototyping. SAE, 2002, 33:16-25.
    [51] Yagiz N,Yuksek I,Sivenoglu,S. Robust control of active suspensions for a full vehicle model using sliding mode control[J]. JSME Internation Journal,SeriesC,1998 (2): 254-258.
    [52] Rubinstein D. and Hitron R. A detailed multi-body model for dynamic simulation of off-road tracked vehicles. Journal of Terramechanics,vol.41(2-3),2004(2): 163-172
    [53]李丽莉,李玉峰,王杏华等.汽车行驶平顺性的预测及优化设计[J].天津大学学报.2006(12): 19-24.
    [54]尹文杰.车辆悬架动力学运动学分析和参数优化[D].北京:.北京理工大学.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700