用户名: 密码: 验证码:
大型冷轧环机虚拟设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环件轧制是借助于环件轧制设备——轧环机,使环件产生壁厚减小、直径扩大、截面轮廓成形的连续局部塑性加工工艺。它具有省力、节能、节材、生产率高、生产成本低、产品范围广等显著特点,广泛应用于生产各种无缝环件。
     本文提出了可轧环件最大外径φ350mm,最大轴向宽度70mm的大型冷轧环机设计要求,完成冷轧环机虚拟设计和虚拟样机的创建工作。
     在确定轧制工艺参数和关键部件结构参数基础上,采用模块化设计思想,应用三维造型软件Pro/E创建了冷轧环机八大主要部件系统CAD模型:主轴部件、芯辊部件、形位辊部件、主滑块部件、进给系统、机械手和机架部件,并依据各部件空间装配关系完成整机CAD模型的创建。
     运用有限元分析软件ANSYS完成冷轧环机关键部件有限元分析,得到了主轴、丝杠和机架的应力和变形分布规律,找到了设计薄弱环节并提出了针对性的修改;主轴和丝杠的动力学特性对整机动态特性和加工精度影响较大,因此选择主轴和丝杠完成动力学分析,得到了它们的固有频率和振型,模态分析结果表明主轴和丝杠固有频率较高,有效的避开了共振区,不会发生共振。在整体结构确定的情况下为了使结构布置更紧凑,设计更合理,选择机架重量最小为目标函数,完成机架结构优化设计,分析结果表明保证足够刚度和强度的条件下,机架重量降低15.6%,左右侧板厚度减小16.7%,底板厚度减小16.7%,拉杆半径减小25%。
     在多体系统动力学仿真分析软件ADAMS环境下建立冷轧环机虚拟样机模型。根据轧制工艺参数设置进给参数完成运动仿真,观察冷轧环机运动过程,得到了冷轧环机工作循环过程运动特性曲线。
     根据冷轧环机工作特性,设计液压进给系统原理图并完成主要液压元器件的选择。利用MATLAB/SIMULINK建立进给系统方框图,调整PID控制器参数K_I、K_P和K_D,分析比例伺服阀控闭环系统的动态特性,得到系统阶跃信号响应曲线,分析表明当K_P=0.6,K_I=0.1,K_D=0.0008时,系统控制效果较好。
Ring rolling is a high-efficiency and high-quality advanced manufacture technology, with which the diameter of the ring increases as the ring cross-section decreases by ring rolling mill. It has many characteristics such as saving forming force and production cost, increasing utilization ratio of energy and material, rising productivity, widening processing range of ring products etc. As a result, ring rolling has become the main manufacture method of many kinds of superior seamless ring parts.
     It was submitted that the design requirements of large size cold ring rolling mill which can produce ring part with utmost diameterφ350mm, and utmost width 70mm. The task of virtual design of the machine was accomplished, and the 3D models and the prototyping were established.
     With the modularization design way, CAD models were created by using the 3D software Pro/E after rolling process parameters and structure parameters of key components. The CAD models were made up of eight main components, such as spindle assembly, mandrel assembly, guide roll assembly, sliding block, feed system, manipulator and housing assembly. These components were assembled into the CAD models of the machine according to inter-part orientation.
     The key components were analyzed by using the finite element analysis software ANSYS. The distributing regulations of stress and strain of the spindle, ball screw and housing were found, and also the design weaknesses. Corresponding modifications were proposed. Dynamic characteristics of the spindle and ball screw had critical influence on the machine dynamic characteristics and the manufacture precision, so the kinematical analysis was accomplished on them, the free frequencies were gained. The results of modal analysis indicated that the free frequencies of the spindle and ball screw were high enough to avoid the resonance region, and the resonance vibration wouldn't happen. In order to make the structure more compact, more proper, by choosing the weight of housing as objective function, the optimization of the housing was accomplished. Guaranteeing enough rigidity and strength, the weight of the housing was reduced by 15.6%, the width of the side plates was reduced by 16.7%, the width of the bottom plate was reduced by 16.7%, and the radius of the bar was reduced by 25%.
     The virtual prototyping was established by using the multi-body system dynamic simulation software of ADAMS. After setting feeding parameters according to rolling process, kinematical simulation was done, the working process of machine was observed, and the curves of kinematic characteristics were gained during the working cycle process.
     The hydraulic feeding system principle was designed, and the main hydraulic parts were chose according to working characteristics of the cold ring rolling mill. The system block diagrams were established by using MATLAB/SIMULINK. By adjusting K_I、K_P and K_D of PID controller, the dynamic characteristics of the hydraulic cylinder system was analyzed which was controlled by proportion servo valve, and the system step response curves were obtained subsequently. It indicated that the effect of the control system was much better when K_P was equal to 0.6, K_I was equal to 0.1, K_D was equal to 0.0008.
引文
[1] 华林,黄兴高,朱春东.环件轧制理论和技术.北京:机械工业出版社,2001
    [2] 左治江,华林.环件冷轧环技术现状和发展.CMET.锻压装备与制造技术,2005,(4):21~26
    [3] 李超,华林.精密冷轧环机的现状和发展.机械制造,2006,44(502):46~48
    [4] 时大方,杨建国,李丹.轴承套圈冷轧环过程分析.轴承,2003,(6):14~15
    [5] Allwood, Julian M, Tekkaya et al. The development of ring rolling technology. Steel Research International, 2005,(2): 111~120
    [6] Kalmykov, V.B. Ring rolling mills and lines for production of ring workpieces. Tyazheloe Mashinostroenie, 2001,(5): 25~29
    [7] 时大方.冷轧环技术在轴承加工中的应用研究及轴承辗扩机的三维有限元分析:[硕士学位论文].合肥:合肥工业大学,2003
    [8] E. Eruo, R. Shivpuri. A Summary of Ring Rolling Technology-Ⅱ, Recent Trends in Machines, Process and Production Lines. Int.J.Mach.Tools Manfufact, 1992,32(3): 399~413
    [9] P. Bouncly, J. Oudin, Y.Ravalard. New Approach for Predicting Ring Rolling with New Wax-Based Model Material on A Flexible Experimental Machine. J.Mech.Working Tech.,1988,(16): 119~143
    [10] W. Johnson, G. Needham. An Experimental Investigation into the Process of Ring or Metal tyre Rolling. Int.J.Mech.Sci.,1968,(10): 455~466
    [11] T.Lim, I.Pillinger, P.Hartley. A finite-element simulation of profile ring rolling using a hybrid mesh model. Journal of Material Processing Technology,1998,(80~81): 199~205
    [12] J. B. Hawkyard, W. Johnson, J. Kirhland, E. Appleton. Analyses for Roll Force and Torque in Ring Rolling, with Some Supporting Experiments. Int.J.Mech.Sci.,1973,(15): 873~893
    [13] 华林,赵仲治,王华昌.环件轧制原理和设计方法,机械工程学报,1996,32(6):66~70
    [14] Hua Lin, Zhao Zhongzhi. The extreme parameters in ring rolling. Journal of Materials Processing Technology, 1997,69(1~3): 273~276
    [15] 华林,梅雪松,吴序堂.环形轧制运动学规律和参数.热加工工艺,1998,(2):20~22
    [16] 华林,梅雪松,吴序堂.轧环机轧辊设计.制造技术与车床,1998,(7):22~23
    [17] 华林,梅雪松,吴序堂.轧环机进给速度设计.机械制造,1998,(8):15~16
    [18] Hua Lin, Mei Xuesong, Wu Xutang. Vibration and control in ring rolling process. Transactions of Nonferrous Metals Society of China, 1999,9(2): 213~217
    [19] 李丹,时大方,朱育权.开式精密冷辗环机主要过程参数控制.轴承,2001,(11):21~22
    [20] 华林.环件轧制孔型共轭设计.汽车工程,2000,35(2):8~10
    [21] 华林.轧环机工作参数理论设计.锻压机械,2000,(2):8~10
    [22] 蒋日东,李从心,王运赣.环件轧制CAD/CAPP/CAM集成.现代机械,1994,(3):42~45
    [23] 许雯.冷轧环机三维CAD模型和优化设计研究:[硕士学位论文].武汉:武汉理工大学,2005
    [24] 陈定方,罗亚波.虚拟设计.北京:机械工业出版社,2002
    [25] 韦有双,杨湘龙,王飞.虚拟现实与系统仿真.北京:国防工业出版社,2004
    [26] 王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002
    [27] C.K.Chua, S.H.Teh, R.K.Gay. Rapid Prototyping Versus Virtual Prototyping in Product Design and Manufacturing. Advanced Manufacturing Technology, 1999, (15): 597~603
    [28] 王国治,洪炉,张栋.摆盘发动机的虚拟设计与运动仿真.中国机械工程,2006,(21):2252~2256
    [29] 成大先主编.减(变)速器·电机与电器.北京:化学工业出版社,2004
    [30] 葛辉,李峰,易险峰.冷辗环机轧辊轴系结构设计.轴承,2006,(2):21~22
    [31] 成大先主编.机械设计手册(第4版)第2卷.北京:化学工业出版社,2002
    [32] 成大先主编.机械设计手册(第4版)第3卷.北京:化学工业出版社,2002
    [33] 杨祖孝.数控机床进给滚珠丝杠的选择与计算.机床与液压,1999,(3):50~52
    [34] 戴曙.数控机床进给系统设计.制造技术与机床,1994,(10):45~49
    [35] 成大先主编.机械设计手册(第4版)第5卷.北京:化学工业出版社,2002
    [36] 彭雪济,丘晖畴,陈清等.机械零件.北京:国防工业出版社,1986
    [37] 全国螺纹标准化技术委员会.中国机械工业标准汇编,螺纹卷(第二版).北京:中国标准出版社,2002
    [38] 诸乃雄.机床动态设计原理与运用.上海:同济大学出版社,1987
    [39] 倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解.北京:电子工业出版社,2003
    [40] 时大方,王卫荣,吴宗彦.PCR-120辗环机机架的三维有限元分析.轴承,2003,(12):18~19
    [41] 鄢奉林,华林,吴永桥等.精密冷辗环机机架预紧研究.武汉理工大学学报,2006,28(10):100~113
    [42] 郝用兴,华林,李勇.D56G90冷辗环机机架的三维有限元分析.机电产品开发与创新,2006,(4):6~8
    [43] Fukuoka, Toshimichi, Xu Quantuo. Finite element simulation of the tightening process of bolted joint with a bolt heater. Journal of Pressure Vessel Technology, Transactions of the ASME, 2002, 124(4): 457~464.
    [44] 吴鹏,聂绍珉.压机组合框架结构的预紧参数优化,塑性工程学报,2005,12(5)66~69
    [45] Brown, David L. Modal Analysis-Past, Present And Future. Proceedings of the International Modal Analysis Conference & Exhibit, 1982,5p
    [46] 曹树谦,张文德,萧龙翔编著.振动结构模态分析——理论、实验与应用.天津:天津大学出版社,2001
    [47] 程坤,王卫荣,黄康,时大方.辗环机主轴的动态特性分析.轴承,2005,(1):22~24
    [48] 许平,高利,迟毅林等.基于ANSYS铣床主轴动力学分析.机电产品开发与创新,2006,19(5):151~152
    [49] 安琦瑜,冯平法,郁鼎文.基于FEM的滚珠丝杠进给系统动态性能分析.制造技术与机床,2005,(10):85~88
    [50] 孙占刚,韩志凌,魏建芳.轧机闭式机架的有限元分析及优化设计.冶金设备,2004,(3):8~11
    [51] Wuerger, D, Gadh, R. Virtual Prototyping of Die Design; part one: theory and formulation. American Society of Mechanical Engineers, Design Engineering Division, 1995,83(2): 989~999
    [52] 华林,左治江,兰箭,等.环件冷轧环芯辊进给速度规范设计.中国机械工程,2006,17(9):953~957
    [53] 张利平编著.液压传动系统及设计.北京:化学工业出版社,2005
    [54] 成人先主编,机械设计手册(第4版)第4卷.北京:化学工业出版社,2002
    [55] 胡军,胡大邦,芮丰.精密冷辗机电液伺服系统研究.流体传动与控制,2005,10(3):9~11
    [56] 李新东,时大方,李斌,等.一种中小型环类零件冷轧环机.中国专利,032460155,2004-10-13
    [57] 郝用兴,华林.冷辗环机液压系统设计与控制,液压与气动,2006,(8):26~29
    [58] 李颖,朱伯立,张威编.Simulink动态系统建模与仿真基础.西安:西安电子科技大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700