用户名: 密码: 验证码:
增强聚对二氧环己酮热稳定性与水解稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对二氧环己酮(PPDO)是一种线型脂肪族聚酯,具有良好的生物相容性、生物降解性和优异的力学性能,除了可用于制造手术缝合线、骨板和组织修复材料等医用材料外,还有望用于制造薄膜、发泡,板材,粘合剂、涂饰剂、无纺布及一次性卫生用品等材料。但其热稳定性较差,在140℃时就开始发生热降解,与其熔点(110℃)非常接近,使得加工温度范围较窄。且在加工过程中由于热降解,分子量及熔体粘度均会显著降低,不利于成型加工;另外, PPDO极易水解,即使在空气中也会迅速降解,这对其作为环境友好材料使用是极为不利的,因为,作为材料使用,至少必须保证其在加工、运输、贮存及使用过程中是稳定的。因此,提高PPDO的热稳定性和水解稳定性,是其能否得到广泛应用的关键问题。
     本文针对PPDO的热降解机理,通过封端、扩链、扩链和封端相结合的方法提高其热稳定性,同时研究改性后聚合物的水解稳定性。
     对PPDO用自制的单异氰酸酯进行封端。用2,4-甲苯二异氰酸酯(TDI)与等摩尔正己醇反应制备单异氰酸酯,用盐酸-二正丁胺滴定法、IR和1HNMR谱进行了分析和表征,证明所得产物为单异氰酸酯。以特性粘数为0.25dL/g的PPDO与单异氰酸酯封端剂反应,并对封端后的PPDO进行了IR和1HNMR表征,证明反应后的产物为封端产物;以特性粘数为1.20dL/g的PPDO均聚物与单异氰酸酯进行封端反应,用等温和非等温TG方法,研究了PPDO和封端PPDO在空气氛中的热降解行为,分别采用Kissinger方法和Friedman方法,计算了在空气氛中的热降解活化能,PPDO分别为91和81kJ/mol,封端PPDO分别为160和149kJ/mol。采用DSC和WAXD分析方法对PPDO和封端PPDO的结晶性能与形态进行了研究。由DSC测得PPDO和封端PPDO的结晶度分别为48%和19%,说明封端使PPDO的结晶度显著下降。
     对PPDO用1,6-六亚甲基二异氰酸酯(HDI)进行扩链。通常PPDO是在有机金属化合物存在下,PDO单体在80℃下开环聚合3-4天制备而成,特性粘数为1dL/g左右。本文以SnOct2为催化剂, PDO单体在125℃下聚合反应3h后加入1,6-六亚甲基二异氰酸酯(HDI)进行扩链,得到高分子量扩链产物PPDO-HDI。整个聚合过程时间不超过5h,特性粘数接近2dL/g,用该种方法制备PPDO时间短,在熔点以上进行反应,易于放大,合成的PPDO特性粘数高。采用非等温TG方法研究了PPDO和PPDO-HDI的热性能,PPDO与PPDO-HDI的起始热分解温度分别为223℃和240℃,PPDO-HDI的热稳定性有所提高。由DSC测得PPDO和PPDO-HDI的结晶度分别为60%和33%,扩链后结晶度显著下降。力学性能研究表明PPDO和PPDO-HDI拉伸强度和断裂伸长率都相近,PPDO分别为36MPa和401%,PPDO-HDI分别为36MPa和464%。
     对扩链后的PPDO再进行封端。对PPDO-HDI分别选用自制的单异氰酸酯、二环己基碳化二亚胺(DCC)和聚碳化二亚胺(PCD)为封端剂进行封端。采用非等温TG方法研究了PPDO和扩链后再封端PPDO的热稳定性,扩链后再封端的PPDO的热稳定性均得到不同程度的提高,扩链后再用PCD封端(PPDO-HDI-PCD)提高最明显,起始热分解温度由PPDO的223℃增大到264℃。采用DSC测得PPDO, PPDO-HDI-PCD的结晶度分别为60%和38%, PPDO-HDI-PCD的结晶度明显下降。力学性能研究表明PPDO-HDI-PCD的拉伸强度与PPDO相近,断裂伸长率增大,PPDO分别为36MPa和401%,PPDO-HDI-PCD分别为38MPa和612%。
     PPDO,封端PPDO,PPDO-HDI的降解实验表明,在空气中的稳定性顺序为PPDO﹤封端PPDO,PPDO﹤PPDO-HDI。体外降解实验表明,PPDO和封端PPDO ,PPDO和PPDO-HDI在pH=7.4的磷酸盐缓冲溶液中的降解速率相近。对PPDO-HDI-PCD用拉伸性能随时间的变化考察了其在空气中的稳定性,拉伸实验表明,PPDO-HDI-PCD的稳定性大于PPDO-HDI。
Poly(p-dioxanone) is a linear aliphatic polyester which has good biocompatibility, biodegradability and mechanical properties. It has been used in medical field, such as monofilament sutures, bone and tissue fixation devices. Furthermore, PPDO also has a great potentiality for general uses such as films, molded products, laminates, foams, non-woven materials, adhesives and coatings. However, it has a poor thermal stability, the thermal degradation of PPDO is detectable above 140℃which is near to its melting point(110℃), so the temperature range of processing is very narrow. Due to the poor thermal stability, the molecular weight and melt viscosity of PPDO significantly decrease during processing which is a disadvantage for processing. In addition, we find that it could quickly degradation even in air. Therefore, how to enhance the thermal stability and hydrolytic stability of PPDO are very important to the processing and extensive applications of PPDO.
     According to the thermal degradation mechanism of PPDO, this investigation focused on enhancing thermal stability of PPDO in the melt by end capping and chain extending, studing the hydro-degradation of the end-capped PPDO and chain-extended PPDO at the same time.
     PPDO was end-capped by mono-isocyanate. The end-capped reagent of mono-isocyanate was prepared through the reaction of toluene-2,4-diisocyanate with equimolar n-hexyl alcohol, and was analysized and characterized by titration, IR and 1HNMR. The end-capped PPDO with low inherent viscosity of 0.25 dL/g was characterized by IR and 1HNMR. The reaction of mono-isocyanate with PPDO ([η]=1.20 dL/g) have been studied. The thermal degradation behavior of end-capped PPDO in air has been investigated by TG. Kissinger method and Friedman method have been used to determine the activation energies. The calculated activation energies were 91, 81 kJ mol-1 for PPDO, and 160, 149kJ mol-1 for end-capped PPDO, respectively. Differential scanning calorimetry (DSC) and wide angle X-ray diffractometry (WAXD) have been utilized to investigate the crystallization and morphology of PPDO and end-capped PPDO. The degrees of crystallinity of PPDO and end capped PPDO by DSC were 48% and 19%, respectively. The melting point of PPDO changed little through end capping. However, the glass transition temperature of end capped PPDO increased to some extent.
     PPDO was chain extended by hexamethylene diisocyanate(HDI). Usually, PPDO was synthesized through the ring-opening polymerization of p-dioxanone, the reaction time was 3-4 days, the inherent viscosity was around 1dL/g. In this paper, PPDO was prepared though ring-opening polymerization of PDO using SnOct2 as a catalyst at 125℃for 3 hours, followed by an increase in molecular weight through reaction with HDI (the product is PPDO-HDI). This was an easy and simple method for production of high molecular weight PPDO in large scale. The thermal degradation behavior of PPDO-HDI in air has been investigated by TG. The initial decomposition temperature of PPDO and PPDO-HDI were 223℃and 240℃, respectively. The degrees of crystallinity of PPDO and PPDO-HDI by DSC were 60% and 33%, respectively. The mechanical properties of PPDO and PPDO-HDI were studied by tensile testing machine. The results showed that the mechanical properties of PPDO and PPDO-HDI were almost at the same level.
     PPDO-HDI was end-capped by mono-isocyanate, N,N’-Dicyclohexylcarbodiimid -e(DCC), poly(carbodiimide)(PCD) , respectively. The thermal degradation behavior of PPDO and end-capped PPDO in air has been investigated by TG. The results showed that the thermal stability of end-capped PPDO were higher than that of pure PPDO. Differential scanning calorimetry (DSC) has been utilized to investigate the crystallization of PPDO and PPDO-HDI-PCD (PPDO-HDI end capped by PCD). The degrees of crystallinity of PPDO and PPDO-HDI-PCD by DSC were 60% and 38%, respectively. The mechanical properties of PPDO and PPDO-HDI-PCD were studied by tensile testing machine. The results showed that the tensile strength of PPDO-HDI-PCD was the same as PPDO, but the elongation was enhanced.
     The degradation tests of PPDO, end-capped PPDO and PPDO-HDI in air at ambient temperature have been performed. The results showed that the stability orders of various PPDO were as followed: PPDO < end-capped PPDO, PPDO < PPDO-HDI. The in-vitro degradation tests of PPDO, end-capped PPDO and PPDO-HDI were carried out in a buffer solution based on hydrogenated sodium phosphate and di-hydrogenated sodium phosphate with an initial pH of 7.4 at 37℃. The results showed that the hydro-stability of end-capped PPDO, PPDO-HDI weren’t enhanced. We investigated the change of mechanical properties to study the stability of PPDO-HDI-PCD in air. The results indicated that the tensile strength and elongation at break of PPDO-HDI-PCD changed slower than that of PPDO.
引文
1 王周玉等. 可生物降解高分子材料的分类及应用.四川工业学院学报, 2003,145(3),145-147.
    2 平郑烨、汪长春. 高分子世界. 复旦大学出版社,2001 年,50.
    3 陆大年等. 新型绿色材料一脂肪族聚酯. 上海化工,2001,5,4-7.
    4 高明等. PBS 基生物降解材料的研究进展. 高分子通讯,2004,5,51-55.
    5 Anne, C. D.; Veroniqiie, B. M.;Francoise, S. Standard Methods for Testing the Aerobic Biodegradation of Polymeric Materials Review and Perspectives. Adv. Polym. Sci. 1998,135, 207-226.
    6 Ragahavan, D . Charaterization of biodegradable plastics. Polym Plast Technol Eng. 1995,34(1), 41-46.
    7 那天海、宋春雷、莫志深. 可生物降解聚合物的现状及生物降解性研究. 2003,16(3), 423-427.
    8 张倩等.生物降解高分子材料聚丙交酯的合成.塑料工业, 2002,30(2),10-13.
    9 Mao, L.J.; Imam, S.; Gordon,S.; Cinelli,P.; Chiellini, E. Extruded Cornstarch-Glycerol-Polyvinyl Alcohol Blends: Mechanical Properties, Morphology, andBiodegradability. J. Polym. Environ. 2000, 4, 205-211.
    10 黄强等.淀粉类生物降解高分子材料研究进展.粮食与饲料工业,2000,51-53.
    11 Gerald S.; Dan G. Degradable Polymer. London: Chapman& Hall, 1995,43-87.
    12 Kowalski, A.; Duda, A.; Penczek, S. Mechanism of Cyclic Ester Polymerization Initiated with Tin(II) octoate. 2. Macromolecules Fitted with tin(II) alkoxide Species Observed Directly in MALDI-TOF Spectra. Macromolecules 2000, 33, 689-695.
    13 Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoate: Biological Polyesters. Prog. Polym. Sci. 2000, 25, 1503-1555.
    14 Nobes, G. A. R.; Kazlauskas, R. J.; Marchessault, R. H. Lipase-catalyzed ring-opening polymerization of lactone: A novel route to poly(hydroxyalkanoate)s. Macromolecules 1996, 29, 4829-4833.
    15 Lee, S. Y.; Choi, J. I. Effect of fermentation performance on the economics ofpoly(3-hydroxybutyrate) production by Alcaligenes latus. Polym. Degrad. Stab. 1998, 59, 387-393.
    16 Baohua Guo, Studies on the sequence structure and crystallinity of poly(butylene succinate) copolymers with terephthalic acid. Chemical Journal of Chinese Universities. 2003,24(12), 2312-2316.
    17 Billmeyer, F. W. Jr.; Eckard, A. D. Synthesis of linear aliphatic polyesters. Macromolecules 1969, 2(1), 103-105.
    18 Schindler, A;Hibionada, Y. M.;Pitt, C. G. Aliphatic polyesters. III. Molecular weight and molecular weight distribution in alcohol-initiated polymerizations ofε-caprolactone. J Polym Sci Polym Chem Ed 1982, 20(2), 319-326.
    19 Linko, Y. Y.; Wang, Z.L.; Seppala, J. Lipase-catalyzed linear aliphatic polyester synthesis in organic solvent. J. Enzyme Microb Technol 1995, 17(6), 506-511.
    20 Shirahama, H.; Shiomi, M.;Sakane, M.; Yasuda, H. Biodegradation of Novel Optically Active Polyesters Synthesized by Copolymerization of (R)-MOHEL with Lactones. Macromolecules 1996, 29(14), 4821-4828.
    21 Dae Kyung, Song; Yong Kiel, Sung; Synthesis and characterization of biodegradable poly(1,4-butanediol succinate). Journal of Applied Polymer Science, 1995,56(11),1381-1395.
    22 朱常英,硕士论文,生物降解型高分子量高熔点脂肪族聚酯的合成及性能研究, 馆藏 号:Y385853,2001.
    23 Meri Suhartini, et.al.Radiation crosslinking of poly(butylene succinate) in the presence of low concentrations of trimethallyl isocyanurate and its properties. Journal of Applied Polymer Science, 2003. 88(9), 2238-2246.
    24 李孝红,衰明龙,熊成东,聚乳酸及其共聚物的合成和在生物医学上的应用. 高分子通报,1999,3(1),24-32.
    25 Wenna Chen;Weijun Luo;Shenguo Wang and Jianzhong Bei. Synthesis and Properties of Poly(L-Lactide)-Poly(Ethylene Glycol) Multiblock Copolymers by Coupling Triblock Copolymers Polymers For Adwanced Technologies 2003,14, 145-153.
    26 Zhang, G D.; Yang, J. Y; Feng. X. D.; Gu, Z. W. Progress in Study of Polylactides. Progr. Chem. 2000, 12 (1), 89-102 (Chinese)
    27 Tasaka, F.; Ohya, Y; Ouchi, T. One-pot Synthesis of Novel Branched Polylactide through theCopolymerization of Lactide with Mevalonolactone. Macromol Rapid Commun. 2001,22, 820-824.
    28 Kricheldorf, H. R.; Damrau, D. O. Polylactones, 42a Zn L-Lactate-catalyzed polymerizations of 1,4-dioxan-2-one. Macromol Chem. Phys. 1998, 199, 1089-1097.
    29 Nishida, H.; Yamashita, M.; Endo, T.; Tokiwa, Y. Equilibrium polymerization behavior of
    1,4-dioxan-2-one in bulk. Macromolecules 2000, 33, 6982-6986.
    30 Yang KK, Wang XL, Wang YZ. Poly(p-dioxanone) and its copolymers. J Macromol Sci 2002;C42,373-98.
    31 温永堂, 付国瑞, 于建明等. 聚对二氧环己酮医用可吸收缝合线纺丝工艺研究. 中国纺织大学学报, 1997, 23(4), 21-25.
    32 温永堂, 郭振友, 边栋材等. TF 缝合线与 PDS 缝合线性能对比研究. 天津纺织工学院 学报, 1998, 17(1), 22-27.
    33 郭敏杰, 刘振, 付国瑞. 增塑剂对对二氧环己酮均聚物及共聚物可吸收缝合线结构与性能的影响. 高分子学报, 2003 (4), 554-558.
    34 Ray, J. A.; Doddi, N.; Regula, D.; Williams, J. A.; Melveger, A. Polydioxanone (PDS), A novel monofilament synthetic absorbable suture. Surgery, Gynecology and Obstetrics 1981, 153(4), 497-507.
    35 Von Fraunhofer, J. A.; Storey, R. S.; Stone, I. K.; Masterson, B. J. Tensile strength of suture materials. J. Biomed. Mater. Res. 1985, 19(5), 595-600.
    36 Knoop, M.; Lunstedt, B.; Thiede, A. Maxon and PDS--evaluation and physical and biologic properties of monofilament absorbable suture materials. Langenbecks Arch. Chir. 1987, 371(1), 13-28.
    37 Lin, H. L.; Chu, C. C.; Grubb, D. Hydrolytic degradation and morphologic study of poly-p-dioxanone. J. Biomed. Mater. Res. 1993, 27, 153-166.
    38 Tomihata, K.; Suzuki, M.; Oka, T.; et al. A new resorbable monofilament stature. Polym Degrad. Stab. 1998, 59, 13-18.
    39 Jamiolkowski, D. D.; Newman Jr., H. D. Medical devices containing high inherent viscosity poly(p-dioxanone). EP 0691359, Januray 10, 1996.
    40 Newman Jr., H. D.; Jamiolkowski, D. D. Medical devices containing high inherent viscosity poly(p-dioxanone). US 5,869,597, February 9, 1999.
    41 Forschner, T. C.; Gwyn, D. E.; Veith, C. A. Method for preparing poly-p-dioxanone polymer. US 5,652,331, Jul. 29, 1997.
    42 Forschner, T. C. Method for preparing poly-p-dioxanone polymer. WO 97,21753, June 19, 1997.
    43 Forschner, T. C. Method for Preparing Poly-p-dioxanone Polymer. US 5,717,059, February 10, 1998.
    44 Jamiolkowski, D. D;Newman, Jr. H. D. Medical Devices Containing High Inherent Viscosity Polyp-dioxanone).EP 0 691 359 A2, Jan. 10, 1996.
    45 Newman, Jr. H. D.; Jamiolkowski, D. Medical Devices Containing High Inherent Viscosity Polyp-dioxanone).US Patent 5, 869, 597, Feb 9, 1999.
    46 Nishida, H.; Yamoshita, M.; Endo, T.; Tokiwa, Y. Equilibrium Polymerization Behavior of 1,4-Dioxan-2-one in Bulk. Macromolecules 2000, 33, 6982-6986.
    47 郭跃海,杨科珂,王玉忠,汪秀丽,周茜. 三乙基铝-乙酰基丙酮金属配和物-水配合体系引发对二氧环己酮(PDO)开环聚合的研究. 高等学校化学学报,2004,25(9),1765-1767.
    48 Raquez, J.M; Degee, Ph;Narayan, R;Dubois,Ph.“Coordination-insertion” Ring-opening Polymerization of 1,4-Dioxan-2-one and Controlled Synthesis of Diblock Copolymers with –Caprolactone . Marcromol Rapid commun. 2000,21,1063-1071.
    49 Doddi,N.; Versfelt,C.C.; Wasserman,D. Synthetic absorbable surgical devices of poly-dioxanone. US 4,032,988, 1977.
    50 Kricheldorf, HR.; Damrau, DO. Polylactones, 42a. Zn L-lactate-catalyzed polymerizations of 1, 4-dioxan-2-one. Macromol Chem Phys 1998,199,1089-1097.
    51 Nishida, H.; Yamashita, M.; Nagashima, M; Endo, T.; Tokiwa, Y. Synthesis of Metal-free Poly(1,4-dioxan-2-one) by Enzyme-catalyzed Ring-opening Polymerization. J. Polym. Sci. PartA: Polym. Chem. 2000, 38, 1560-1567.
    52 杨科珂,黄海霞,汪秀丽,王玉忠. 异丙醇斓引发对二氧环己酮开环聚合.化学研究与 应. 2004. 16(3). 409-410.
    53 Witzke, D. R.; Narayan, R.; Kolstad, J. J. Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with 2-ethylhexanoic acid tin(II) salt. Macromolecules 1997, 30, 7075-7085.
    54 Duda, A.; Penczek, S. Thermodynamics of L-lactide polymerization. Equilibrium monomerconcentration. Macromolecules 1990, 23, 1636-1639.
    55 Kricheldorf, H. R.; Mahler, A.; Lee, S. R. Polymers of carbonic acid.19. High molecular weight poly(octamethylene carbonate) by ring-opening polymerization with BuSnCl3 or Sn(Oct)2. New Polym. Mater. 1996, 5, 25-34.
    56 Kricheldorf, H. R.; Mahler, A. Polymers of carbonic acid.18. Polymerizations of cyclobis(hexamethylene carbonate) by means of BuSnCl3 or Sn(II)2-ethylhexanoate. Polymer 1996, 37, 4383-4388.
    57 Kricheldorf, H. R.; Mahler, A.; Lee, S. R. Polymers of carbonic acid. 20. High molecular weight poly(decamethylene carbonate) by ring-opening polymerization initiated with BuSnCl3 or Sn(Oct)2. J. Macromol. Sci., Pure Appl. Chem. 1997, A34(3), 417-428.
    58 Yang, K.K. Wang, X.L.Wang, Y.Z. Wu, B. Jin, YD. Yang, B. Kinetics of thermal degradation and thermal oxidative degradation of polyp-dioxanone). Europ.Polym. J 2003,39, 1 567-1574.
    59 Yang, K.K.; Wang, X.L.; Wang, YZ.; Huang, H.X. Effects of molecular weights of polyp-dioxanone) on its thermal, rheological and mechanical properties and intro degradability. Mater. Chem. Phys. 2004, 87, 218-221.
    60 Nishida H, Yamashita M, Hattori M, Endo T, Tokiwa Y. Thermal decomposition of poly(1,4-dioxan-2-one). Polym Degrd Stab 2000,70,485-96.
    61 Nishida H, Yamashita M, Endo T. Analysis of the initial process in pyrolysis of poly(p-dioxanone). Polym Degrd Stab 2002,78,129-35.
    62 Raquez, J. M.; Degee, P.; Narayan, R.; Dubois, P. Synthesis of melt-stable and semi-crystalline poly(1,4-dioxan-2-one) by ring-opening (co)polymerization of 1,4-dioxan-2-one with different lactones. Polym. Degrad. Stab. 2004, 86, 159-169.
    63 朱慧, 杨科珂,汪秀丽,周茜,李斌,王玉忠. 对二氧环己酮/己内酯嵌段共聚物的合成与表征. 高分子材料科学与工程. 2004, 20(5), 105-108.
    64 Showa Highpolymer Co., Ltd. Preparation of biodegradable high molecular weight aliphatic polyesters. EP 0572256, May 27, 1993.
    65 Lai Q, Wang YZ, Yang KK, Wang XL, Zeng Q. Chain-extension and thermal behaviors of poly(p-dioxanone) with toluene-2,4-diisocyanate. Reactive&Functional polymers. 2005,65,309-315.
    66 Jamshidi, K.; Hyon, S. H.; Ikada, Y. Thermal characterization of polylactides. Polymer 1988, 29, 2229-2234.
    67 杨淑英, 彭汉, 黄斌, 陈立班. 改进 CO2-环氧化物共聚物的热稳定性. 石油化工 1993, 22, 730-734.
    68 刘占琦, 彭述文, 庄宇钢 , 董丽松 . 一种可生物降解的脂肪族聚酯复合材料. CN1366004A, 2002.8.28.
    69 Ding SD, Wang YZ. Enhanced thermal stability of poly(1,4-dioxan-2-one) in melt by adding a chelator. Polym Degrd Stab 2006,91,2465-2470.
    70 Mathisen, T.; Albertsson, A. C. Hydrolytic degradation of melt extruded fibers from β-propiolactone. J. Appl. Polym. Sci. 1990, 38, 591-601.
    71 Albertsson, A. C. Degradable polymers. J. Macromol. Sci., Pure Appl. Chem. 1993, A30, 757-765.
    72 Karlsson, S.; Albertsson, A.-C. Abiotic and biotic degradation of aliphatic polyesters from “petro” versus “green” resources. Macromol. Symp. 1998, 127, 219-225.
    73 Karlsson, S.; Albertsson, A.-C. Biodegradable polymers and environmental interaction. Polym. Eng. Sci. 1998, 38, 1251-1253.
    74 Mochizuki, M.; Hirami, M. Structural effects on the biodegradation of aliphatic polyesters. Polym. Advan. Techn. 1997, 8, 203-209.
    75 Nishida, H.; Konno, M.; Ikeda, A.; Tokiwa, Y. Microbial degradation of poly(p-dioxanone)Ⅰ . Isolation of degrading microorganisms and microbial decomposition in pure culture. Polym. Degrad. Stab. 2000, 68, 205-217.
    76 Nishida, H.; Konno, M.; Tokiwa, Y. Microbial degradation of poly(p-dioxanone)Ⅱ . Isolation of hydrolyzates-utilizing microorganisms and utilization of poly(p-dioxanone) by mixed culture. Polym. Degrad. Stab. 2000, 68, 271-280.
    77 Sabino, M. A.; Gonzalez, S.; Marquez, L.; Ferjoo, J. L. Study of the hydrolytic degradation of polydioxanone PPDX. Polym. Degrad. Stab. 2000, 69, 209-216.
    78 Sabino, M.A.; Albuerne. J.; Muller, A.J.; Brisson, J.; Prudhomme, R.E. Influence of in Vitro Hydrolytic Degradation on the Morphology and Crystallisation Behavior of Poly(p-dioxmone). Biomacromolechles 2004, 5, 358-370.
    79 Yu, J. M.; Fu, G. R.; Bian, D. C.; Zhou, X. F.; Liu, Ch. Y.; Yu, J. L. Studies on in vitrodegradation of absorbable polydioxanone suture. Acta Polym. Sin. 1996, 6, 675-682 (Chinese).
    80 Guo, M. J.; Liu, Z.; Fu, G. R. Suture on hydrolytic degradation of poly (dioxanone -co- glycolide) monofilament suture in vitro. Acta Polymerica Sinica 2002, 2, 157-162.
    81 Chui, P. O.; Ruth, E. C. The hydrolytic degradation of polydioxanone (PDSII) sutures. Part I: morphological aspects. J. Biomed. Mater. Res. (Appl. Biomater.) 2002, 63, 280-290.
    82 Chui, P. O.; Ruth, E. C. The hydrolytic degradation of polydioxanone (PDSII) sutures. Part II: micromechanisms of deformation. J. Biomed. Mater. Res. (Appl. Biomater.) 2002, 63, 291-298.
    83 Nishida, H.; Yamashita, M.; Nagashima, M.; Hattori, N;Endo, T.; Tokiwa, Y Theoretical Prediction of Molecular Weight on Autocatalytic Random Hydrolysis of Aliphatic Polyesters Marcromolecules 2000, 33, 6595-6601.
    84 Pectin, A.P.T.; Duek, E.A.R. Hydrolytic degradation of poly(para-dioxanone) films prepared by casting or phase separation. Polym Degra and Stab. 2002, 78, 405-411.
    85 顾继友,高振华,艾军等. 木材加工用异氰酸酯胶粘剂研究报告. 国家“九五”科技攻关项目验收会,南京,2000.8
    86 杨立亚. 甲苯二异氰酸酯含量测定研究. 天津化工,2001,6,34.
    87 王黎,蔡钊龙,刘生鹏等。封闭型异氰酸酯固化剂的制备及应用。现代涂料与涂装,2005,4,3-5.
    88 Grepinet,B. Pla, F.and et al., Modeling and simulation of urethane acrylates synthesis. I. Kinetics of uncatalyzed reaction of toluene diisocyanate with a monoalcohol. Journal of Applied Polymer Science, 2000, 75, 705-712.
    89 Kissinger H. Reaction kinetics in differential thermal analysis. Anal Chem 1957,29,1702-06.
    90 Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry-application to a phenolic resin. J Polym Sci: Part C 1964,6,183-95.
    91 Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich B. Heat capacity of poly-p-dioxanone. J Macromol Sci Phys 1998,37(1),27-44.
    92 周维祥.塑料测试技术.化学工业出版社 2002, 4, 125-134.
    93 Cort, L. A.; Francis, N. R. Halogeno-1,4-dioxans and their derivatives. Part III. Interaction of trans-2,3-dichloro-1,4-dioxan and amines. J. Chem. Soc. 1964, 2799-2801.
    94 来俏. 聚对二氧环己酮扩链研究. 四川大学硕士学位论文,2004.
    95 徐海涛, 杨 勇, 李序霞, 王炳凯. 碳化二亚胺的制备及其水解稳定作用. 弹性体. 2003, 13(6), 71-73.
    96 苗亚男, 丁国荣编译. 一种新的用于聚酯型聚氨酯和TPU的液态碳化二亚胺水解稳定剂. 世界橡胶工业. 2003, 30(2), 18-21.
    97 李序霞, 黄岐善, 徐海涛, 杨勇. MDI基碳化二亚胺耐水解稳定剂的研制. 聚氨酯工业. 2004, 19(1), 33-36.
    98 郭宝华, 丁慧鸽, 周明波, 胡平. 聚对苯二甲酸丁二醇酯(PBT) 抗水解性能的研究. 材料科学与工艺. 2001, 9(3), 312-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700