1. [地质云]滑坡
一种新型宽带低RCS共享孔径超表面设计
详细信息    查看官网全文
摘要
设计并制作了一种宽带雷达散射截面(radar cross section,RCS)减缩的共享孔径超表面(shared aperture metasurface,SA-MS)。该超表面由一种完美吸波体(perfect metamaterial absorber,PMA)结构和两种人工磁导体(artificial magnetic conductor,AMC)结构组成。通过将这三种结构进行共享孔径布阵,有效拓展了超表面RCS的减缩带宽。仿真结果表明:在法向入射的平面波照射下,SA-MS的RCS在4.88GHz-14.38GHz范围内有至少3d B减缩,最大减缩量为14d B,相对带宽达到98.7%。最后对仿真模型加工实测,测试结果与仿真结果吻合较好,验证了所设计SA-MS的宽带低RCS特性。
A design method of wideband low radar cross section(RCS) shared aperture metasurface is proposed in this paper. It is presented that RCS reduction bandwidth of the metasurface could be expanded in the way of shared aperture between a kind of PMA(perfect metamaterial absorber) and two kinds of AMCs(artificial magnetic conductor). The simulation results reveal that an apparent RCS reduction is reached at the range of 4.88GHz-14.38 GHz of the SA-MS for the vertical incidence of both x and y polarized wave. The maximum reduction is 14 d B and the relative bandwidth is 98.7%. Finally the simulation model is fabricated and measured. The experiment results verify the correctness and the creditability of the simulations. It is confirmed that the SA-MS possess the characteristics of wideband low RCS.
引文
[1]Heeseung Lim,Dongheok Shin,Kyoungsik Kim,Jeonghoon Yoo.Electromagnetic band-gap structure design using the auxetic unit-structure for easily controllable tenability[J].Journal of Applied Physics,2014,116(24):243506.
    [2]Ying Liu,Yuwen Hao,Hui Wang,Kun Li,Shuxi Gong.Low RCS Microstrip Patch Antenna Using Frequency-Selective Surface and Microstrip Resonator[J].IEEE Antennas and Wireless Propagation Letters,2015,14:1290-1293.
    [3]Yongtao Jia,Ying Liu,Jay Guo,Kun Li,Shuxi Gong.Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction[J].IEEE Transactions on Antennas and Propagation,2016,64(1):179-188.
    [4]M.Mighani,G.Dadashzadeh.Broadband RCS reduction using a novel double layer chessboard AMC surface[J].Electronics Letters,2016,52(14):1253-1255.
    [5]Kadir Ustun,Gonul Turhan-Sayan.Wideband long wave infrared metamaterial absorbers based on silicon nitride[J].Journal of Applied Physics,2016,120:203101.
    [6]Paquay M.,Iriarte J.C.,Ederra,et al.Thin AMC structure for radar cross-section reduction[J].IEEE Transactions on Antennas and Propagation,2007,55(12):3630-3638.
    [7]Yi Zhao,Xiangyu Cao,Jun Gao,Wenqiang Li.Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor[J].Microwave and Optical Technology Letters,2014,56(1):158-161.
    [8]N.I.Landy,S.Sajuyigbe,J.J.Mock,D.R.Smith,W.J.Padilla.Perfect metamaterial absorber[J].Physical Review Letter,2008,100(20):207402.
    [9]Somak Bhattacharyya and Kumar Vaibhav Srivastava.Triple band polarization–independent metamaterial absorber using electric field-driven LC resonator[J].Journal of Appled Physics,2014,115:064508.
    [10]邹涛波,胡放荣,肖靖,张隆辉,刘芳,陈涛,牛军浩,熊显名基于超材料的偏振不敏感太赫兹宽带吸波体设计[J].物理学报,2014,63(17):178103.