用户名: 密码: 验证码:
植物塘+人工湿地+吸附池系统净化灌溉水中镉
详细信息    查看官网全文
摘要
灌溉已成为南方稻田土壤重金属Cd超标的主要输入源之一,研究通过构建"沉砂池+植物塘+人工湿地+吸附池"组合工艺系统,分析其对灌溉水中重金属镉(Cd)净化效果。结果表明,所选研究区域灌溉水中的Cd超标严重,根据GB 5084-1992灌溉水水质标准,该区灌溉水超标率高达82.69%,且水中可溶态Cd含量较高,平均为56.34%,潜在危害性大。经过工艺系统处理后水中可溶态Cd平均去除率为94.72%,全量镉(Cd)平均去除率为94.78%,贡献率主要集中在植物塘,对可溶态Cd和全量镉(Cd)的去除两个植物塘的贡献率总共占了70.92%和70.13%。可见,Cd超标灌溉水经过沉砂池+植物塘+人工湿地+吸附池组合工艺处理后可有效的去除灌溉水中镉,且系统依据地势采用无动力自流设计运行费用低,具有较强的推广潜力,可为Cd超标灌溉水的净化与稻田安全生产提供科学参考与数据支持。
Irrigation has become one of the main input sources of heavy metal Cd in paddy soils in southern China. The research on the purification of heavy metal cadmium(Cd) in irrigation water by constructing a combined process system of "grit chamber + plant pond + artificial wetland + adsorption pool". The results showed that the Cd in irrigation water exceeded the standard, according to the GB 5084-1992 irrigation water quality standard, the over-standard rate of irrigation water was 82.69%, and the content of soluble Cd in water was 56.34% Harmful. The average removal rate of soluble Cd was 94.72% and 94.78%, respectively, and the contribution rate of cadmium(Cd) was mainly concentrated in the plant pond, and the removal of Cd and Cd The total contribution of the two ponds accounted for 70.92% and 70.13%. It can be seen that the Cd over-standard irrigation water can effectively remove cadmium in irrigation water through the combination of grit chamber + plant pond + constructed wetland + adsorption pool, and the system is based on the terrain using non-power gravity flow design low operating costs, with strong promotion potential, Which can provide scientific reference and data support for the purification of Cd over-standard irrigation water and the safe production of paddy field.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].[2014-04-17].http://www.mlr.gov.cn/xwdt/jrxw/201404/t20140417_1312998.htm.
    [2]Arao T,Kawasaki A,Baba K,etal.2009.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J].Environmental Science&Technology,43:9361-9367.
    [3]Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J].Biometals,2004,17(5):549-553.
    [4]张兴梅,杨清伟,李扬.土壤镉污染现状及修复研究进展[J].河北农业科学,2010,14(3):79-81.
    [5]Moriarty F.Ecotoxicology:the study of pollutants ine-cosystems[M].London,Academic Press,1999:29-35.
    [6]Zhao F J,Ma Y B,Zhu Y G et al.Soil Contamination in China:Current Status and Mitigation Strategies[J].Environmental Science&Technology,2015,49,750-759.
    [7]李玉清,周雪梅,姜国辉,等.含镉水灌溉对水稻产量和品质的影响[J].灌溉排水学报,2012,31(04):120-123.
    [8]陈喆,张淼,叶长城,等.富硅肥料和水分管理对稻米镉污染阻控效果研究[J].环境科学学报,2013.31(12)4003-4010.
    [9]张淼,叶长城,喻理,等.矿物硅肥与微生物菌剂对水稻吸收积累镉的影响[J].农业环境科学学报,2016,04:627-633.
    [10]刘孝利,曾昭霞,铁柏清,等.几种修复措施对Cd淋失及土壤剖面运移影响[J].环境科学,2016,02:734-739.
    [11]Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J].Biometals,2004,17(5):549-553.Laurence W.Gill,Pamela Ring,Neil M.P.Higgins,et al.Accumulation of heavy metals in a constructed wetland treating road runoff[J]Ecological Engineering,2014,70:133-139.
    [12]李冰,舒艳,李科林,等.人工湿地宽叶香蒲对重金属的累积与机理[J].环境工程学报,2016,04:2099-2108.
    [13]张清,人工湿地的构建与应用[J].湿地科学,2011,9(4):373-379.
    [14]张弛,袁亚光,钦佩,等.香蒲对重金属镉的耐性及吸收途径研究[J]南京大学学报,2013,49,206-511.
    [15]叶志鸿,陈桂珠,蓝崇钰,等.宽叶香蒲净化塘系统净化铅/锌矿废水效应的研究[J]应用生态学报,1992,3(2):190-194.
    [16]张纯,裴丽蓉,汪彩文,等.芦苇和香蒲在人工湿地城市污泥处理系统的应用[J]环境工程学报,2013,7(7),2728-2732.
    [17]王忠全,温琰茂,黄兆霆,等.几种植物处理含重金属废水的适应性研究[J]生态环境,2005,14(4):540-544.
    [18]崔晨,蔡建波,华玉妹,等.菹草对微污水中重金属复合污染的净化效果[J]华中农业大学学报,2014,33(2),72-77.
    [19]吴玉树,余国莹.根生沉水植物菹草对滇池水体的净化作用[J]环境科学学报,1991,11(4),411-416.
    [20]Lim P E,Tay M G,Mak K Y,etal.The effect of heavy metalson nitrogen and oxygen demand removal in constructed wetlands[J].Science of the Total Environment,2003,301(1-3):13-21.
    [21]Ryssen R V,Leermakers M,Baeyens W.The mobilization potential of trace metals in aquatic sediments as a tool for sediment quality classification[J].Envir.Science&Policy,1999,2(1):75-86.
    [22]窦磊,周永章,蔡立梅,等.酸矿水中重金属人工湿地处理机理研究[J]环境科学与技术,2006,11(1):09-03
    [23]Chandra P,Kulshreshtha K.Chromium accumulation andtoxicity in aquatic vascular plants[J].The Botanical Review,2004,70(3):313-327.
    [24]Nirmal-Kumar J I,Soni H,Kumar R N,et al.Macrophytesin phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve,Gujarat,India[J].Turkish Journal of Fisheries and Aquatic Sciences,2008,8:193-200.
    [25]Mishra V K,Upadhyay A R,Pandey S K,etal.Concentrationsof heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coalmining effluent[J].Environmental Monitoring and Assessment,2008,141:49-58.
    [26]NIRMAL-KUMARJ I,SONI H,KUMAR R N.Macrophytes in phytoremediation of heavy metal contaminated water and sedimentsin Pariyej Community Reserve,Gu-jarat,India[J],Turkish J Fisheries Aquatic Sci,2008,8:193-200.
    [27]MISHRAVK,UPADHYAYAR,PANDEYSK,etal.Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent[J],Environ Monit Assess,2008,141(1/2/3):49-58.
    [28]张晶晶.城市降雨径流中重金属污染特征与污染负荷[D].华东师范大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700