用户名: 密码: 验证码:
TBM法煤矿斜井围岩压力拱确定方法初探
详细信息    查看官网全文
摘要
以神华新街台格庙煤矿TBM斜井工程为依托,采用数值计算手段对煤矿斜井深埋段围岩压力拱的确定进行了初步探讨。研究考虑了单一地层、软硬不均复合地层和穿越煤层段等工况,压力拱体范围以斜井洞室拱顶上方的为代表。研究表明:对于洞室拱顶而言,压力拱内边界为最大主应力出现位置,外边界为最大主应力方向发生偏转的位置。当围岩等级处于条件较好时,拱体内边界位于洞周;压力拱外边界距拱顶约0.85D。当围岩等级降低时,由于洞室开挖引起的应力重分布需要调用更大范围的围岩进行承载,使得压力拱边界远离洞室断面。当斜井洞室埋深较大时,软硬不均对压力拱的影响有限。斜井断面范围内存在煤层时,会使压力拱体厚度增大。研究结果可为深埋隧道、井巷等工程的设计提供参考意义。
Basedon the shield inclined shafts of Shenhua Xinjie Taigemiao Coal Mine Project,the determination of pressure arch around the caverns is studied employing numerical simulation method.Single stratum,uneven hardness compound strata as well as coal seam are considered in this paper,and the region of pressure arch upon the crown is taken as the representative in the study.The results show that for pressure arch upon the crown,the inner boundary can be defined as the position where the maximum principal stress exists,as the outer boundary can be defined as the position where the maximum principal stress direction-deflexion exists.When the surrounding rock grade is good,the inner arch boundary is at the cavern perimeter,and the outer boundary is about 0.85 D away from the cavern crown.When the rock grade goes worse,the stress redistribution caused by the cavern excavation needs a larger range of surrounding rock,which makes the pressure arch boundary far away from the tunnel section.For compound strata,the uneven hardness has limited effects on pressure arch for deep-buried shafts.The existence of coal seam in cavern section causes the increase of pressure arch thickness.The results can provide references for the design of deep-buried tunnel,shaft or drift.
引文
[1]Kovari K.Erroneous Concepts Behind the New Austrian Tunnelling Method[J].Tunnels&Tunnnelling,1994(11):38-41.
    [2]Bradyb H G,Brown E T.Rock Mechanics for Underground Mining[M].London:George Allen&Unwin,1985.
    [3]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.CAI Meifeng,He Manchao,Liu Dongyan.Rock Mechanics and Engineering Geology[M].Beijing:Science Press,2002.
    [4]TerzaghiK.Theoretical Soil Mechanics[M].New York:John Wiley&Sons,1947.
    [5]Huang Z.Stabilizing of Rock Cavern Roofs by Rockbolts[D].Norway:Norwegian University of Science and Technology,2001.
    [6]喻波,王呼佳.压力拱理论及隧道埋深划分方法研究[M].北京:中国铁道出版社,2008.YU Bo,WANG Hujia.Theory of Pressure Arch and Study of Division Method about Tunnel Embedded Depth[M].Beijing:China Railway Publishing House,2008.
    [7]王迎超,严细水,尚岳全,等.深埋圆形隧道的压力拱研究[J].地下空间与工程学报,2012,8(6):910-915,945.WANG Yingchao,YAN Xishui,SHANG Yuequan,et al.Study on Pressure-Arch of Deep Circular Tunnel[J].Chinese Journal of Underground Space and Engineering,2012,8(6):910-915,945.
    [8]扈世民.黄土隧道围岩压力拱效应分析[J].铁道学报,2014,36(3):94-99.HU Shimin.Analysis on Pressure-arch Effect of Surrounding Rock in Loess Tunnel[J].Journal of The China Railway Society,2014,36(3):94-99.
    [9]李奎.水平层状隧道围岩压力拱理论研究[D].西南交通大学,2010.LI Kui.Pressure Arch Theory Study of Horizontal Bedded Tunnel Surrounding Rock[D].Southwest Jiaotong University,2010.
    [10]郑康成,丁文其,金威.基于模型试验与FEM的TBM圆形隧道压力拱成拱规律[J].煤炭学报,2015,40(6):1270-1275.ZHENG Kangcheng,DING Wenqi,JIN Wei.Formulation Law of Pressure Arch of Circular TBM Tunnel Based on Model Test and FEM[J].Journal of China Coal Society,2015,40(6):1270-1275.
    [11]中华人民共和国铁道部.TB10003-2005,J449-2005铁路隧道设计规范[S].北京:2005.Ministry of Railways of the People's Republic of China.TB 10003-2005,J449-2005 Code for Design on Tunnel of Railway[S].Beijing:2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700