用户名: 密码: 验证码:
Facile synthesis of Fe_3O_4@Cu(OH)_2 composites and their As(Ⅲ) adsorption application
详细信息    查看官网全文
摘要
A directly coating method, controlled double-jet precipitation(CDJP), was developed for synthesizing magnetic Fe_3O_4@Cu(OH)_2 composites in combination of advantages of magnetic rapid separation and satisfactory adsorption performance. The morphology and structure of the composites were analyzed by SEM, TEM, XRD, FTIR, XPS and VSM techniques. Through controlling the reaction on Fe_3O_4 particles, directly coating of Cu(OH)_2 was successfully realized without the extra complicated procedures. The obtained Fe_3O_4@Cu(OH)_2 consists of micro particles of size around 250 nm coated with special leaf-like nanomorphologies, possessing high saturation magnetization(from 56.5 to 98.84 emu g~(-1)). As the amount of loaded Cu is increased, As(III) removal of the composites augments from 3.76 mg g~(-1) to 41.41 mg g~(-1). The Fe_3O_4@Cu(OH)_2 composites is a hopeful candidate for treating arsenic contaminated water.
A directly coating method, controlled double-jet precipitation(CDJP), was developed for synthesizing magnetic Fe_3O_4@Cu(OH)_2 composites in combination of advantages of magnetic rapid separation and satisfactory adsorption performance. The morphology and structure of the composites were analyzed by SEM, TEM, XRD, FTIR, XPS and VSM techniques. Through controlling the reaction on Fe_3O_4 particles, directly coating of Cu(OH)_2 was successfully realized without the extra complicated procedures. The obtained Fe_3O_4@Cu(OH)_2 consists of micro particles of size around 250 nm coated with special leaf-like nanomorphologies, possessing high saturation magnetization(from 56.5 to 98.84 emu g~(-1)). As the amount of loaded Cu is increased, As(III) removal of the composites augments from 3.76 mg g~(-1) to 41.41 mg g~(-1). The Fe_3O_4@Cu(OH)_2 composites is a hopeful candidate for treating arsenic contaminated water.
引文
[1]D.K.Nordstrom,Worldwide Occurrences of Arsenic in Ground Water,Science.(2002)2143-2145.
    [2]I.Villaescusa,J.-C.Bollinger,Arsenic in drinking water:sources,occurrence and health effects(a review),Rev.Environ.Sci.Biotechnol.7(2008)307-323.
    [3]D.Mohan,C.U.Pittman Jr,Arsenic removal from water/wastewater using adsorbents-A critical review,J.Hazard.Mater.142(2007)1-53.
    [4]T.S.Y.Choong,T.G.Chuah,Y.Robiah,F.L.Gregory Koay,I.Azni,Arsenic toxicity,health hazards and removal techniques from water:an overview,Desalination.217(2007)139-166.
    [5]L.M.Camacho,M.Gutiérrez,M.T.Alarcón-Herrera,M.d.L.Villalba,S.Deng,Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA,Chemosphere.83(2011)211-225.
    [6]S.E.Amrose,A.J.Gadgil,S.R.S.Bandaru,C.Delaire,C.M.van Genuchten,L.Li,C.Orr,A.Dutta,A.Deb Sarkar,A.Das,J.Roy,Locally affordable and scalable arsenic remediation for South Asia using ECAR,36th WEDC International Conference,Nakuru,Kenya,(2013).
    [7]V.Chandra,J.Park,Y.Chun,J.W.Lee,I.C.Hwang,K.S.Kim,Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal,ACS nano.4(2010)3979-3986.
    [8]C.Escudero,N.Fiol,I.Villaescusa,J.C.Bollinger,Arsenic removal by a waste metal(hydr)oxide entrapped into calcium alginate beads,J.Hazard.Mater.164(2009)533-541.
    [9]T.Marino,A.Figoli,Arsenic removal by liquid membranes,Membranes.5(2015)150-167.
    [10]T.Wang,L.Zhang,H.Wang,W.Yang,Y.Fu,W.Zhou,W.Yu,K.Xiang,Z.Su,S.Dai,L.Chai,Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride)and their application in arsenic removal,ACS Appl.Mater.interfaces.5(2013)12449-12459.
    [11]N.B.Belgin Ergül,M.Salim?ncel,The Use of Manganese Oxide Minerals for the Removal Arsenic and Selenium Anions from Aqueous Solutions,Energy.Environ.Eng.2(2014)103-112.
    [12]M.Chiban,M.Zerbet,G.Carja,F.Sinan,Application of low-cost adsorbents for arsenic removal:A review,J.Environ.Chem.Ecotoxicol.4(2012)91-102.
    [13]D.Mohan,C.U.Pittman Jr,M.Bricka,F.Smith,B.Yancey,J.Mohammad,P.H.Steele,M.F.Alexandre-Franco,V.Gómez-Serrano,H.Gong,Sorption of arsenic,cadmium,and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production,J.Colloid.Interf.Sci.310(2007)57-73.
    [14]C.A.Martinson,K.J.Reddy,Adsorption of arsenic(III)and arsenic(V)by cupric oxide nanoparticles,J.Colloid.Interf.Sci.336(2009)406-411.
    [15]Z.Li,S.Deng,G.Yu,J.Huang,V.C.Lim,As(V)and As(III)removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism,Chem.Eng.J.161(2010)106-113.
    [16]X.Yu,R.Xu,C.Gao,T.Luo,Y.Jia,J.Liu,X.Huang,Novel 3D hierarchical cotton-candy-like Cu O:surfactant-free solvothermal synthesis and application in As(III)removal,ACS Appl.Mater.interfaces.4(2012)1954-1962.
    [17]F.Mou,J.Guan,H.Ma,L.Xu,W.Shi,Magnetic iron oxide chestnutlike hierarchical nanostructures:preparation and their excellent arsenic removal capabilities,ACS Appl.Mater.interfaces.4(2012)3987-3993.
    [18]D.Toulemon,B.P.Pichon,X.Cattoen,M.W.Man,S.Begin-Colin,2D assembly of non-interacting magnetic iron oxide nanoparticles via"click"chemistry,Chem.Commun.47(2011)11954-11956.
    [19]R.Chen,C.Zhi,H.Yang,Y.Bando,Z.Zhang,N.Sugiur,D.Golberg,Arsenic(V)adsorption on Fe3O4nanoparticle-coated boron nitride nanotubes,J.Colloid.Interf.Sci.359(2011)261-268.
    [20]L.Feng,M.Cao,X.Ma,Y.Zhu,C.Hu,Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal,J.Hazard.Mater.217-218(2012)439-446.
    [21]R.Hao,R.Xing,Z.Xu,Y.Hou,S.Gao,S.Sun,Synthesis,functionalization,and biomedical applications of multifunctional magnetic nanoparticles,Adv.Mater.22(2010)2729-2742.
    [22]A.G.Chmielewski,D.K.Chmielewska,J.Michalik,M.H.Sampa,Prospects and Challenges in Application of Gamma,Electron and Ion Beams in Processing of Nanomaterial,Nucl.Instrum.Methods Phys.Res.Sect.B,265(2007)339-346.
    [23]S.Thatai,P.Khurana,J.Boken,S.Prasad,D.Kumar,Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques:A review,Microchem.J.116(2014)62-76.
    [24]W.Schartl,Current directions in core-shell nanoparticle design,Nanoscale.2(2010)829-843.
    [25]Y.Liu,X.Ju,Y.Xin,W.Zheng,W.Wang,J.Wei,R.Xie,Z.Liu,L.Chu,A novel smart microsphere with magnetic core and ion-recognizable shell for Pb2+adsorption and separation,ACS Appl.Mater.Interfaces.6(2014)9530-9542.
    [26]J.Lee,Y.Lee,J.K.Youn,H.B.Na,T.Yu,H.Kim,S.M.Lee,Y.M.Koo,J.H.Kwak,H.G.Park,Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high performance biocatalysts,Small.4(2008)143-152.
    [27]J.Meng,C.Shi,B.Wei,W.Yu,C.Deng,X.Zhang,Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography-mass spectrometry,J.Chromatogr.A,1218(2011)2841-2847.
    [28]Y.Deng,W.Yang,C.Wang,S.Fu,A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure,Adv.Mater.15(2003)1729-1732.
    [29]R.Gao,X.Kong,X.Wang,X.He,L.Chen,Y.Zhang,Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein,J.Mater.Chem.21(2011)17863-17871.
    [30]S.Xuan,Y.Wang,J.Yu,K.C.-F.Leung,Preparation,characterization,and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites,Langmuir.25(2009)11835-11843.
    [31]Q.Yu,M.Shi,Y.Cheng,M.Wang,H.Chen,Fe3O4@Au/polyaniline multifunctional nanocomposites:Their preparation and optical,electrical and magnetic properties,Nanotechnology.19(2008)265702.
    [32]Y.Liu,L.Zhou,Y.Hu,C.Guo,H.Qian,F.Zhang,X.Lou,Magnetic-field induced formation of 1DFe3O4/C/Cd S coaxial nanochains as highly efficient and reusable photocatalysts for water treatment,J.Mater.Chem.21(2011)18359-18364.
    [33]J.Saiz,E.Bringas,I.Ortiz,Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters,J.Chem.Technol.Biot.89(2014)909-918.
    [34]H.Li,S.Yu,X.Han,Fabrication of Cu O hierarchical flower-like structures with biomimetic superamphiphobic,self-cleaning and corrosion resistance properties,Chem.Eng.J.283(2016)1443-1454.
    [35]S.Meshram,P.Adhyapak,U.Mulik,D.Amalnerkar,Facile synthesis of Cu O nanomorphs and their morphology dependent sunlight driven photocatalytic properties,Chem.Eng.J.204-206(2012)158-168.
    [36]A.Nezamzadeh-Ejhieh,M.Karimi-Shamsabadi,Decolorization of a binary azo dyes mixture using Cu Oincorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation,Chem.Eng.J.228(2013)631-641.
    [37]K.Maeda,K.Domen,New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light,J.Phys.Chem.C.111(2007)7851-7861.
    [38]W.Tang,Y.Su,Q.Li,S.Gao,J.Shang,Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic(III,V)removal and easy magnetic separation,Water.Res.(2013)3624-3634.
    [39]Y.Guo,Z.Zhu,Y.Qiu,J.Zhao1,Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions,J.Environ.Sci.(2013)944-953.
    [40]C.Escudero,N.Fiol,I.Villaescusa,J.-C.Bollinger,Arsenic removal by a waste metal(hydr)oxide entrapped into calcium alginate beads,J.Hazard.Mater.(2009)533-541.
    [41]Y.Yang,M.Yang,X.Dou,H.He,D.Wang,Arsenate Adsorption on an Fe-Ce Bimetal Oxide Adsorbent:Role of Surface Properties,Environ.Sci.Technol.(2005)7246-7253.
    [42]P.Pillewan,S.Mukherjee,T.Roychowdhury,S.Das,A.Bansiwal,S.Rayalu,Removal of As(III)and As(V)from water by copper oxide incorporated mesoporous alumina,J.hazard.mater.186(2011)367-375.
    [43]C.Lu,L.Qi,J.Yang,D.Zhang,N.Wu,J.Ma,Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and Cu O Nanostructures,J.Phys.Chem.B.108(2004)17825-17831.
    [44]M.C.Biesinger,B.P.Payne,L.W.M.Lau,A.Gerson,R.S.C.Smart,X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal,oxide and hydroxide systems,Surf.Interface.Anal.41(2009)324-332.
    [45]R.Hua,Z.Li,Sulfhydryl functionalized hydrogel with magnetism:Synthesis,characterization,and adsorption behavior study for heavy metal removal,Chem.Eng.J.249(2014)189-200.
    [46]L.Zhou,Y.Zou,J.Zhao,P.Wang,L.Feng,L.Sun,D.Wang,G.Li,Facile synthesis of highly stable and porous Cu2O/Cu O cubes with enhanced gas sensing properties,Sensor.Actuat.B:Chem.188(2013)533-539.
    [47]G.Zhang,Z.Ren,X.Zhang,J.Chen,Nanostructured iron(III)-copper(II)binary oxide:A novel adsorbent for enhanced arsenic removal from aqueous solutions,Water.Res.47(2013)4022-4031.
    [48]C.Cao,J.Qu,W.Yan,J.Zhu,Z.Wu,W.Song,Low-cost synthesis of flowerlike alpha-Fe2O3 nanostructures for heavy metal ion removal:adsorption property and mechanism,Langmuir.28(2012)4573-4579.
    [49]Z.Ma,Y.Guan,H.Liu,Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups,J.Polym.Sci.Pol.Chem.43(2005)3433-3439.
    [50]T.Wang,L.Zhang,C.Li,W.Yang,T.Song,C.Tang,Y.Meng,S.Dai,H.Wang,L.Chai,J.Luo,Synthesis of Core-Shell Magnetic Fe3O4@poly(m-Phenylenediamine)Particles for Chromium Reduction and Adsorption,Environ.Sci.Technol.49(2015)5654-5662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700