用户名: 密码: 验证码:
喀斯特高原不同植被类型土壤团聚体稳定性及有机碳分布特征
详细信息    查看官网全文
摘要
土地利用变化对土壤团聚体稳定性及其结合有机碳(SOC)有重要影响。采用野外调查与室内分析相结合的方法,对喀斯特峡谷裸地(BL)、草丛(GL)、灌木林(SL)和乔木林(WL)土壤团聚体稳定性与水稳性团聚体有机碳的分布特点进行了研究。结果表明:(1)对于风干性团聚体,BL,GL,SL和WL均以>5mam团聚体为主,不同粒级土壤团聚体含量随粒径减小而降低;对于水稳性团聚体而言则以<0.25mam的团聚体为主,水稳性团聚体含量随粒径减小而呈现先增加后降低再增加的趋势。(2)在0~60cm土层内,风干团聚体和水稳性团聚体平均重量直径(MWD)和平均几何直径(GMD)表现为:WL>GL>SL>BL,分形维数(D)则相反。由裸地向草丛、灌木和乔木林的正向演替,各土层>0.25mm水稳性团聚体(WSA_(0.25))含量、MWD和GMD显著提高,团聚体结构体破坏率(PAD)和分形维数(D)显著降低,显著提高了土壤水稳性。(3)植被恢复后SOC含量增加,乔木林SOC含量平均值分别是裸地,草地个灌木林的2.35,1.37和1.26倍;土壤SOC和各粒级水稳性团聚体有机碳含量均以0~20cm土层最高。(4)水稳性团聚体有机碳含量基本随土壤团聚体粒级的减小而增加,除裸地外均以<0.25mm粒级最大,团聚体有机碳的贡献率均以<0.25mm粒级最大,介于18.85%-41.08%。次生乔木林和撂荒草丛更有利于水稳性团聚体的稳定和土壤有机碳的保护,减少人为干扰、促进植被自然恢复是喀斯特地区生态恢复和防止土壤侵蚀的有效途径。
Land use change has an important influence on soil aggregate stability and aggregate- associated organic carbon.Soil aggregate stability,distribution and accumulation features of aggregate-associated organic carbon were studied under 4 typical vegetation types including bare land(BL),grassland(GL),shrub land(SL) and woodland(WL) in typical Karst Plateau region.The results showed that soil aggregates were dominated by particles with sizes >5mm under dry sieving treatment and decreased with the decrease of particle sizes,while soil aggregates were dominated by particle sizes <0.25 mm under wet sieving treatment and basically presented a trend of increasing firstly,then decreasing and finally increasing along with particle sizes decreasing.Mean weight diameter(MWD) and geometrical mean diameter(GMD) both represent as on both dry and wet sieving treatment,while fractal dimensions(D) on the contrary.In the process of bare land-grassland-shrub land-woodland,aggregate destruction rate(PAD) and fractal dimensions(D) in soil layers reduced significantly,>0.25 mm water stable aggregate(WSA_(0.25)),MWD and GMD increased significantly,which improved water stability significantly.Soil organic carbon(SOC) and aggregate- associated organic carbon showed cohesiveness in surface layer,SOC increased after vegetation restoration and SOC in woodland were obviously superior to other three kinds of vegetation types.Contents of aggregate-associated organic carbon were basically increased with the reduce of aggregates particle sizes,organic carbon were the highest in sizes <0.25 mm except bare land,and contribution rates of aggregate-associated organic carbon were maximum in sizes<0.25 mm,ranging from 18.85% to 41.08%.Secondary woodland and natural grassland were more conducive to aggregate stability and protection of aggregate- associated organic carbon,therefore,reducing human disturbance and promoting to natural restoration is an effective methods to ecological restoration and soil erosion control in karst regions.
引文
[1]毛艳玲,杨玉盛,邹双全,等.土地利用变化对亚热带山地红壤团聚体有机碳的影响[J].山地学报,2007,25(6):706-713
    [2]Abu-Hamdeh NH,Abo-Qudais SA,Othman AM.Effect of soil aggregate size on infiltration and erosion characteristics[J].European Journal of Soil Science,2005,57(5):609-616
    [3]刘晓利,何园球.不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究[J].土壤,2009,41(1):84-89
    [4]郭伟,史志华,陈利顶,等.红壤表土团聚体粒径对坡面侵蚀过程的影响[J].生态学报,2007,27(6):2516-2522
    [5]Rachman A,Anderson SH,Gantzer CJ.Influence of long-term cropping systems on soil physical properties related to soil erodibility[J].Soil Science Society of America Journal,2003,67(2);637-644
    [6]Valmis S,Dimoyiannis D,Danalatos N G.Assessing interrill erosion rate from soil aggregate instability index,rainfall intensity and slope angle on cultivated soils in central Greece[J].Soil and Tillage Research,2005,80:139-147
    [7]Le Bissonnais Y.Aggregate stability and assessment of soil crushability and erodibility I.Theory and methodology.European Journal of Soil Science,1996,47:425-435
    [8]Le Bissonnais Y,Arrouays D.Aggregate stability and assessment of soil crustability and erodibility II.Application to humic loamy soils with various organic carbon contents[J].European Journal of Soil Science,1997,48:39-48.
    [9]Young RA.Characteristics of eroded sediment[J].Transactions of the ASAE.1980,23:1139-1146.
    [10]Bryan RB.Soil erodibility and processes of water erosion on hill slopes[J].Geomorphology,2000,32:385-415
    [11]Jastrow JD.Soil aggregates formation and the accrual of particulate and mineral-associated organic matter[J].Soil Biology and Biochemistry,1996,28:656-676
    [12]Unger PW.Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll[J].Soil&Tillage Research,1997,42:95-113
    [13]袁道先,刘再华,林玉石,等.中国岩溶动力系统[M].北京:地质出版社,2002
    [14]潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程:以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999,18(4):289-296
    [15]唐夫凯,崔明,周金星,同帅,丁访军.岩溶峡谷区不同退耕还林地土壤有机碳库差异分析[J].中国水土保持科学,2014,12(4):1-7
    [16]刘雷,安韶山,黄华伟.应用Le Bissonnais法研究黄土丘陵区植被类型对土壤团聚体稳定性的影响[J].生态学报,2013,33(20):6670-6680
    [17]祁迎春,王益权,刘军,等.不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J].农业工程学报,2011,27(1):340-347
    [18]闫峰陵,史志华,蔡崇法,李朝霞.红壤表土团聚体稳定性对坡面侵蚀的影响.土壤学报,2007,44(4):577-583.
    [19]魏亚伟,苏以荣,陈香碧,等.人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响[J].应用生态学报,2011,22(4):971-978
    [20]谭秋锦,宋同清,彭晚霞,等.峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J].应用生态学报,2014,25(3):671-678
    [21]李娟,廖洪凯,龙健,等.喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J].生态学报,2013,33(7):2147-2156
    [22]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005
    [23]中科院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978
    [24]Sainju UM,Terrill TH,Gelaye S,et al.Soil aggregation and carbon and nitrogen pools under rhizoma peanut and perennial weeds[J].Soil Sci Soc Am.J,2003,67:146-155
    [25]石辉.转移矩阵法评价土壤团聚体的稳定性[J].水土保持通报,2006,26(3):91-95
    [26]何淑勤,郑子成,宫渊波.不同退耕模式下土壤水稳性团聚体及其有机碳分布特征[J].水土保持学报,25(5):229-233
    [27]Tyler SW,Wheatcraft S W.Application of fractal mathematics to soil water retention estimation[J].Soil Science Society of America Journal,1989,53:987-996
    [28]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899
    [29]卢凌霄,宋同清.彭晚霞,等.喀斯特峰丛洼地原生林土壤团聚体有机碳的剖面分布[J].应用生态学报,2012,23(5):1167-1174
    [30]Tisdall JM,Oades JM.Organic matter and water-stable aggregates[J].Journal of Soil Science,1982,33:141-163
    [31]Dexter AR.Advances in characterization of soil structure.Soil&Tillage Research,1988,11:199-238
    [32]Nimmo JR,Perkins KS.Aggregate stability and size distribution//Dane JH,Topp GC,eds.Methods of Soil Analysis,Part4:Physical Methods.Madison,WI:Soil Science Society of America,2002:317-328
    [33]Perfect E,Kay B D.Fractal theory applied to soil aggregate[J].SoilSci Soc.Am.J.1991,55:1552-1558
    [34]肖复明,少辉,汪思龙,等.毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J].水土保持学报,2008,22(2):131-134
    [35]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599
    [36]罗友进,魏朝富,李渝,等.土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响[J].生态学报,2011,31(1):257-266
    [37]周刚,赵辉,陈国玉,等.花岗岩红壤区不同地类土壤抗蚀性分异规律研究[J].中国水土保持,2008(9):27-29
    [38]李阳兵,谢德体,魏朝富,等.利用方式对岩溶山地土壤团粒结构的影响研究[J].长江流域资源与环境,2002,11(5):451-455
    [39]DeJonge LW,Jacobsen OH,Moldrup P.Soil water repellency effects of water content,temperature and particle size[J].Soil Sci Soc Am.J.1999,63:437-44
    [40]Christensen BT.Straw incorporation and soil organic matter in macro aggregates and particle size separates.European Journal of Soil Science,1986,37:125-135
    [41]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-428
    [42]Puget P,Angers DA,Chenu C.Nature of carbohydrates associated with water stable aggregates of two cultivated soils.Soil Biology and Biochemistry,1998,31:55-63
    [43]Puget P.Chenu C.Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].Eur J.Soil Sci,2000,51:595-605
    [44]李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J].土壤通报,2000,31(5):193-195
    [45]HassinkJ.The capacity of soils top reserve organic C and N by their association with clay and silt particles.Plant and Soil,1997,191(1):77-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700