用户名: 密码: 验证码:
玻璃微珠在聚丙烯基复合材料中粒度分布的分形特征研究
详细信息    查看官网全文
摘要
用熔融共混法将中空玻璃微珠(HGB)和实心玻璃微珠(SGB)两种玻璃微珠(GB)填充到聚乙烯(PP)树脂中制备PP/HGB和PP/SGB复合材料,通过冲击实验获取复合材料断面,采用SEM观测GB粒子在材料断面中的分布,应用粒度分布分形维数(Dm)的计算模型和图像处理软件IPP(Image Pro-Plus)测算了GB粒子在PP树脂中的Dm。结果表明:GB粒子的PP树脂中的粒度分布具有显著的分形特征,Dm可以定量表征其粒度分布宽度;填充后,GB粒子的D_n值增加,粒度分布宽度变宽;在填充分数(φf)相同的条件下,平均粒度较大(35μm)的HGB比平均粒度(10μm)较小的HGB具有更大的D_n值,经改性的SGB在PP树脂中的Dm总体上较未改性的SGB的略大。最后提出用Dm的相对变化率(T)的概念来定量表征粒子的聚集状态。
The polypropylene(PP) composites filled with two different kinds of glass bead(GB),hollow glass bead(HGB)and solid glass bead(SGB),were prepared by the method of melt blending process,the fracture surface of the PP composites were obtained by the impact test,and the distribution of the GB particles in the fracture surface were observed by the scanning electron microscope(SEM),the particle size distribution fractal dimension(D_m) of the GB particles in the PP resin by using the calculating model for the D_m and the image processing software IPP(Image Pro-Plus).The results indicated that the fractal characteristic of particle size distribution of the GB particles was evident,and the D_m could be used to characterize the particle size distribution width quantitatively;the D_m of GB particles increased after being filled in the PP resin and the particle size distribution width widened;under the condition of the same filling fraction(φ_f),the D_m of the HGB with the average particle size 35 μm.was larger than that of the HGB with the average particle size 10 μm,the D_m of the modified SGB in the PP resin was larger than that of the non-modified SGB roughly.At last,the relative variation ratio(T) of the D_m was proposed to characterize the degree of aggregation of the particles in the resin matrix.
引文
1 Machado F,Lim E L,Pinto J C,et al.In situ preparation of polypropylene/1-butene alloys using a MgCl_2-supported Ziegler-Natta catalyst[J].Eur Polym J,2008,44:1130.
    2 Yu H Y,et al.Thermo-and pH-responsive polypropylene micro porous membrane prepared by the photo induced RAFT-mediated graft copolymerization[J].J Membr Sci,2009,343(1-2):82.
    3 Sangroniz L,Palacios J K,Fernandez M,et al.Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology[J].Eur Polym J,2016,83:10.
    4 Wang K,Pang Y Y,Wu F,et al.Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO_2[J].J Supercrit Fluids,2016,110:65.
    5 Jayananrayanan K,Thomas S,Joseph K.Morphology,static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly(ethylene terephthalate)blends[J].Composites:Part A,2008,39:164.
    6 Mohamed H G,Okumura W,Ueda H,et al.Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay[J].Composites Part B.2015,69:94.
    7 Mattos B D,Misso A L,et al.Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles[J].Construction Building Mater,2014,30:60.
    8 Golebiewski J,Galeski A.Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA[J].Compos Sci Technol,2007,67:3442.
    9 Stan F,Sandu L I,Fetecau C.Effect of processing parameters and strain rate on mechanical properties of carbon nanotube-filled polypropylene nanocomposites[J].Composites Part B,2014,59:109.
    10 Hu P W,Yang H M Polypropylene filled with kaolinite-based conductive powders[J].Appl Clay Sci,2013,83-84:122.
    11 Kopplmayr T,Milosavljevic I,et al.Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene[J].Polym Test,2013,32(3):535.
    12 Weon J I,Gam K T,Boo W J,et al.Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite[J].J Appl Polym Sci,2006,99:3070.
    13 Svoboda P,Theravalappil R,Svobodova D,et al.Elastic properties of polypropylene/ethylene-octene copolymer blends[J].Polym Test,2010,29(6):742.
    14 Panda A K,Singh R K.Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene[J].J Fuel Chem Technol,2011,39(3):198.
    15 Mohd Firdaus Omar,Hazizan Md Akil,Zainal Arifin Ahmad.Static and dynamic compressive properties of mica/polypropylene composites[J].Mater Sci Eng A,2011,528(3):1567.
    16 Xu R J,Chen M Y,Zhang F,et al.High thermal conductivity and low electrical conductivity tailored in carbon nanotube(carbon black)/polypropylene(alumina)composites[J].Compos Sci Technol,2016,133:111.
    17 Zhao J,Li B A,Li X,et al.Numerical simulation of novel polypropylene hollow fiber heat exchanger and analysis of its characteristics[J].Appl Thermal Eng,2013,59(1-2):134.
    18 Shen L,Chen Y H,Li P L.Synergistic catalysis effects of lanthanum oxide in polypropylene/magnesium hydroxide flame retarded system[J].Composites Part A:Appl Sci Manuf,2012,43(8):1177.
    19 Liang J Z.Impact fracture toughness of hollow glass bead-filled polypropylene composites[J].J Mater Sci,2007,42(3):841.
    20 Liang J Z,Li R K Y.Mechanical properties and morphology of galss bead-filled polypropylene[J].Polymer Compos,1998,19(6):698.
    21 Yang K,Yang Q,Li G X,et al.Mechanical properties and morphologies of polypropylene with different sizes of glass bead particles[J].Polym Compos,2008,29(9):992.
    22 Sjogren B A,Berglund L A.Failure mechanisms in polypropylene with glass beads[J].Polym Compos,1997,18:1.
    23 Liang J Z.Tensile properties of hollow glass bead-filled polypropylene composites[J].J Appl Polym Sci,2007,104:1697.
    24 Liang J Z,Wu C B.Effects of the glass bead content and the surface treatment on the mechanical properties of polypropylene composites[J].J Appl Polym Sci,2012,123(5):3054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700