用户名: 密码: 验证码:
Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering
详细信息    查看官网全文
摘要
The growth behaviors of the intermetallic compounds(IMCs) formed at the eutectic Sn3.5Ag/polycrystalline Cu and pure Sn/polycrystalline Cu interfaces are comparatively studied based on an experiment in which the liquid solder is removed before the end of soldering. This removal of the solder allows for the capture and visualization of the interfacial IMCs formed during liquid-state soldering and avoids the influence of Cu_6Sn_5 precipitated from the solder matrix during cooling. The results show that round, scallop-type Cu_6Sn_5 grains with a strong texture form at the molten solder/Cu interface and that their growth is controlled more by grain boundary(GB) diffusion at the beginning of the reaction followed by volume diffusion, whereas the growth of Cu_3Sn is only volume-diffusion-controlled. In addition, in contrast to the predictions of some studies, Ag does not inhibit interfacial IMC growth. Instead, by changing the interfacial energy between the molten solder and the interfacial IMC, the addition of Ag affects the growth orientation and coarsening behavior of interfacial Cu_6Sn_5 grains. These changes lead to more Cu_6Sn_5 GBs at the interface and therefore greater IMC formation and Cu consumption in the Sn3.5Ag/Cu reaction than in the Sn/Cu reaction under the same reflow conditions.
The growth behaviors of the intermetallic compounds(IMCs) formed at the eutectic Sn3.5Ag/polycrystalline Cu and pure Sn/polycrystalline Cu interfaces are comparatively studied based on an experiment in which the liquid solder is removed before the end of soldering. This removal of the solder allows for the capture and visualization of the interfacial IMCs formed during liquid-state soldering and avoids the influence of Cu_6Sn_5 precipitated from the solder matrix during cooling. The results show that round, scallop-type Cu_6Sn_5 grains with a strong texture form at the molten solder/Cu interface and that their growth is controlled more by grain boundary(GB) diffusion at the beginning of the reaction followed by volume diffusion, whereas the growth of Cu_3Sn is only volume-diffusion-controlled. In addition, in contrast to the predictions of some studies, Ag does not inhibit interfacial IMC growth. Instead, by changing the interfacial energy between the molten solder and the interfacial IMC, the addition of Ag affects the growth orientation and coarsening behavior of interfacial Cu_6Sn_5 grains. These changes lead to more Cu_6Sn_5 GBs at the interface and therefore greater IMC formation and Cu consumption in the Sn3.5Ag/Cu reaction than in the Sn/Cu reaction under the same reflow conditions.
引文
[1]Laurila T,Vuorinen V,Kivilahti JK.Mater Sci Eng R 2005;49:1e60.
    [2]Shen J,Chan YC,Liu SY.Intermetallics 2008;16:1142e8.
    [3]Alam MO,Chan YC,Tu KN.J Appl Phys 2003;94:7904e9.
    [4]Nogita K,Gourlay CM,Nishimura T.JOM 2009;61:45e51.
    [5]Yu DQ,Wang L.J Alloys Compd 2008;458:542e7.
    [6]Ma X,Wang F,Qian Y,Yoshida F.Mater Lett 2003;57:3361e5.
    [7]Yu DQ,Wang L,Wu CML,Law CMT.J Alloys Compd 2005;389:153e8.
    [8]Huang ML,Loeher T,Ostmann A,Reichi H.Appl Phys Lett 2005;86:181908.
    [9]Sharif A,Chan YC,Islam MN,Rizvi MJ.J Alloys Compd 2005;388:75e82.
    [10]Gain AK,Fouzder T,Chan YC,Yung WK.J Alloys Compd 2011;509:3319e25.
    [11]Gong J,Liu C,Conway PP,Silberschmidt VV.Acta Mater 2008;56:4291e7.
    [12]Moon KW,Boettinger WJ,Kattner UR,Biancaniello FS,Handwerker CA.J Electron Mater2000;29:1122e36.
    [13]Prakash KH,Sritharan T.Acta Mater 2001;49:2481e9.
    [14]Li M,Yang M,Kim J.Mater Lett 2012;66:135e7.
    [15]Yang M,Li M,Wang L,Fu Y,Kim J,Weng L.Mater Lett 2011;65:1506e9.
    [16]Gorlich J,Schmitz G,Tu KN.Appl Phys Lett 2005;86:053106.
    [17]Dariavach N,Callahan P,Liang J.J Electron Mater 2006;35:1581e92.
    [18]Chuang T,Wu H,Cheng M,Chang S,Yen S.J Electron Mater 2004;33:22e7.
    [19]Yang M,Li M,Wang L,Fu Y,Kim J,Weng L.J Electron Mater 2011;40:176e88.
    [20]Suh JO,Tu KN,Tamura N.Appl Phys Lett 2007;91:051907.
    [21]Li M,Zhang Z,Kim J.Appl Phys Lett 2011;98:201901.
    [22]Suh JO,Tu KN,Lutsenko GV,Gusak AM.Acta Mater 2008;56:1075e83.
    [23]Ma D,Wang WD,Lahiri SK.J Appl Phys 2002;91:3312e7.
    [24]Kim HK,Tu KN.Phys Rev 1996;B53:16027e34.
    [25]Gusak AM,Tu KN.Phys Rev 2002;B66:115403.
    [26]Schaefer M,Fournelle RA,Liang J.J Electron Mater 1998;27:1167e76.
    [27]Li J,Mannan S,Clode M,Whalley D,Hutt D.Acta Mater 2006;54:2907e22.
    [28]Jackson KA.Prog Solid State Chem 1967;4:53e80.
    [29]Choi WK,Jang SY,Kim JH,Paik KW,Lee HM.J Mater Res 2002;17:597e9.
    [30]Agarwal R,Singh Z,Venugopal V.J Alloys Compd 1999;282:231e5.
    [31]Flandorfer H,Saeed U,Luef C,Sabbar A.Thermochim Acta 2007;459:34e9.
    [32]Arenas MF,Acoff VL.J Electron Mater 2004;33:1452e8.
    [33]Ghosh G.J Appl Phys 2000;88:6887e96.
    [34]German RM,Bose A,Mani SS.Metall Trans A 1992;23:211e9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700