用户名: 密码: 验证码:
量子振动微扰方法及应用
详细信息    查看官网全文
摘要
红外探针光谱,不仅在解析复杂生物蛋白质结构和动力学,揭示构象结构、动力学过程与生物蛋白功能的内在联系,理解蛋白质内部的氢键网络、静电势、蛋白质折叠与聚集、酶催化反应机理等方面被广泛应用[1,2],而且在量子溶剂微观超流研究中也扮演重要的角色[3,4]。然而,定量解释实验光谱观测依然是理论物理化学家们长期面临的一项重要挑战,主要归咎于凝聚相体系的大尺度、超快过程、核振动的量子效应。最近,基于微扰理论和离散变分法,结合分子动力学取样和QM/MM势能计算,我们发展了新的一维、二维红外探针光谱计算新方法,并成功的应用于气溶胶、弱酸强酸水溶液等红外探针光谱的模拟。理论光谱的位置和形状与实验结果都很好的吻合。局部振动模间的偶合、非谐性及有效的约化维数的处理方法将进行深入的讨论。
Site-specific infrared(IR) probe spectra provide a unique way to reveal the local electrostatic field, microscopic conformation, interaction and dynamics of the chemical and biological processes in condense phase. However, up to date, quantitative interpretation of experimental spectra is still a major challenge due to the fast time scale, nuclear quantum effects and large-scale systems with complicated surrounding solvent. In this work, we propose a quick and accurate new approach to simulate 1D or 2D-IR spectra, which is a semi-classical method through a combination of the classical sampling the intermolecular structures, and quantum treatment of the time-depended transition frequencies of a specific vibrational mode based on the first-order perturbation approximation. The IR spectra obtained in this way can replicate not only the peak position but also the line shape of the experimental spectra accurately. This method was successfully applied in studies of the infrared spectra of aerosol, weak or strong water solution, and complicated biological systems.
引文
[1]Fried S.D;Bagchi S.;Boxer S.G.,Science.2014,346:1510.
    [2]Jeon J.;Yang S.;Choi J.H.and Cho M.,Acc.Chem.Rev.2013,113:5817.
    [3]Grebenev S.;Sartakov B.;Toennies J.P.;Vilesov A.F.,Science.2000,289:1532.
    [4]Li H.;Le Roy R.J.;Roy P.-N.;Mc Kellar A.R.W,Phys.Rev.Lett.2010,105:133401.
    [5]Hou D.,Ma Y.-T.;Zhang X.-L.;Li H.,J.Chem.Phys.2016,144:014301.
    [6]Xue R.-J.;Qu Z.-X.;Li H.;Gao J.,2016,submitted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700