用户名: 密码: 验证码:
极限学习机回归与分类算法及其在矿产预测中的应用
详细信息    查看官网全文
摘要
人工神经网络方法是矿产资源评价领域应用广泛的一类非线性统计方法。但是,常用的神经网络方法需要预先定义一系列初始化参数而且模型训练过程收敛速度缓慢、容易出现过拟合现象。极限学习机是一种新的单一层前馈神经网络模型学习算法,该算法的初始化参数少、学习训练速度快而且模型泛化性能强。作为一种新的非线性回归与分类模型,极限学习机已广泛应用于机器学习领域。鉴于此,我们选择青海省拉陵灶火地区为实验研究区,将研究区划分成37,400个网格统计单元(含矿单元17个),构建了基于极限学习机回归和分类的多金属矿产靶区预测非线性统计模型,预测了研究区的多金属矿产靶区,用ROC(Receiver Operating Characteristic Curve)曲线评价了模型的矿产靶区预测效果,用AUC(ROC曲线下方面积)评价了模型的矿产靶区预测总体效果,用约登指数确定了矿产靶区与非靶区的最佳分界线。研究结果表明:1 ROC曲线特征和AUC统计值揭示极限学习机模型能够很好地区分研究区含矿和非含矿统计单元;2应用约登指数圈定的最优预测靶区占研究区总面积比例小(2.66~3.66%)但最优靶区包含了研究区绝大多数的已知多金属矿床(点)(82%);3极限学习机回归和分类模型的学习训练过程耗时短(75.6~518.3秒)。由此可见,极限学习机可以作为一种性能优越的数据驱动型矿产预测模型。
引文
[1]Abedi M.,Norouzi,G.H.,Bahroudi A.2012.Support vector machine for multi-classification of mineral potential areas.Computers&Geosciences,46(9):272-283.
    [2]Baglama,J.,Reichel,L.2006.Restarted block Lanczos bidiagonalization methods.Numer.Algorithm,43(3):251-272.
    [3]Behnia,P.2007.Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran.Natural Resources Research,16:147-155.
    [4]Breiman,L.2001.Random forests.Machine Learning,45(1):5-32.
    [5]Brown,W.M.,Gedeon,T.D.,Groves,D.I.,Barnes,R.G.2000.Artificial neural networks:a new method for mineral potential mapping:Australian Journal of Earth Sciences,47(4):757-770.
    [6]Brown,W.,Gedeon,T.,Groves,D.I.2003a.Use of noise to augment training data:a neural network method of mineral-potential mapping in regions of limited known deposit examples.Natural Resources Research,13:141-152.
    [7]Brown,W.,Groves,D.,Gedeon,T.2003b.Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping.Natural Resources Research,12:183-200.
    [8]Carranza,E.J.M.,Laborte,A.G.2015a.Data-driven predictive mapping of gold prospectivity,Baguio district,Philippines:Application of Random Forests algorithm.Ore Geology Reviews,71:777-787.
    [9]Carranza,E.J.M.,Laborte,A.G.2015b.Data-driven predictive modeling of mineral prospectivity using Random Forests:a case study in Catanduanes Island(Philippines).Natural Resources Research,DOI:10.1007/s11053-015-9268-x.
    [10]Carranza,E.J.M.,Laborte,A.G.2015c.Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra(Philippines).Computers&Geosciences 74,60-70.
    [11]谌宏伟,罗照华,莫宣学,刘成东,柯珊.2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,32(3):386-395.
    [12]陈静,谢智勇,李彬,李善平,谈生祥,任华,张启梅.2013a.东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义.地质与勘探,49(5):0813-0824.
    [13]陈静,谢智勇,李彬,谈生祥,任华,张启梅,李燕.2013b.东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义.矿物岩石,33(2):26-34.
    [14]Chen,Y.L.2004.MRPM:three visual basic programs for mineral resource potential mapping.Computers&Geosciences,30:969-983.
    [15]Chen,Y.L.2015.Mineral potential mapping with a restricted Boltzmann machine.Ore Geology Reviews,71:749-760.
    [16]Chen,Y.L.,An,A.J.2016.Application of ant colony algorithm to geochemical anomaly detection.Journal of Geochemical Exploration,164:75-85.
    [17]Chen,Y.L.,Lu,L.J.,and Li,X.B.2014.Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly.Journal of Geochemical Exploration,140:56-63.
    [18]Chen,Y.L.,Wu,W.2016.A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis.Ore Geology Reviews,74:26-38.
    [19]杜玮,凌锦兰,周伟,王子玺,夏昭德,夏明哲,范亚洲,姜常义.2014.东昆仑夏日哈木镍矿床地质特征与成因.矿床地质,33(4):713-726
    [20]杜玉良,贾群子,韩生福.2012.青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究.西北地质,45(4):69-75.
    [21]Hanley,J.A.,Mcneil,B.J.1982.The meaning and use of the area under a receiver operating characteristic(ROC)curve.Radiology,143:29-36.
    [22]Elden,L.2004.Partial least-squares vs.Lanczos bidiagonalization-I:analysis of a projection method for multiple regression.Comput.Stat.Data Anal.,46(1):11-31.
    [23]Geranian,H.,Tabatabaei,S.H.,Asadi,H.H.,Carranza,E.J.M.2015.Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit,NW Iran.Natural Resources Research,DOI:10.1007/s11053-015-9271-2.
    [24]韩永明,马维明,马忠明,马启龙,马玉龙.2015.青海拉陵灶火地区多金属成矿条件及找矿标志.现代矿业,558(10):128-130.
    [25]Harris,D.,Pan,G.1999.Mineral favorability mapping:a comparison of artificial neural networks,logistic regression,and discriminant analysis.Natural Resources Research,8:93-109.
    [26]Harris,D.,Zurcher,L.,Stanley,M.,Marlow,J.,Pan,G.2003.A comparative analysis of favorability mappings by weights of evidence,probabilistic neural networks,discriminant analysis,and logistic regression.Natural Resources Research,12:241-255.
    [27]Hernandez-Orallo,J.2013.ROC curves for regression.Pattern Recognition,46(12):3395-3411.
    [28]Huang,G.B.,Chen,L.2007.Convex incremental extreme learning machine.Neurocomputing,70(16-18):3056-3062.
    [29]Huang,G.B.,Chen,L.2008.Enhanced random search based incremental extreme learning machine.Neurocomputing,71(16-18):3460-3468.
    [30]Huang,G.B.,Chen,L.,Siew,C.K.2006a.Universal approximation using incremental constructive feedforward networks with random hidden nodes.IEEE Trans.Neural Netw.,17(4):879-892.
    [31]Huang,G.B.,Ding,X.J.,Zhou,H.M.2010.Optimization method based extreme learning machine for classification.Neurocomputing,74(1-3):155-163.
    [32]Huang,G.B.,Zhou,H.M.,Ding,X.J.,Zhang,R.2012.Extreme learning machine for regression and multiclass classification.IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,42(2):513-529.
    [33]Huang,G.B.,Zhu,Q.Y.,Siew,C.K.2004.Extreme learning machine:A new learning scheme of feedforward neural networks.In Proc.IJCNN,Budapest,Hungary,Jul.25-29,2,985-990.
    [34]Huang,G.B.,Zhu,Q.Y.,Siew,C.K.2006b.Extreme learning machine:Theory and applications.Neurocomputing,70(1-3):489-501.
    [35]胡正国,刘继庆,钱壮志,李厚民,孙继东,苏春乾,闫臻,任家琪,郑涛,古凤宝,魏新俊.1999.东昆仑区域成矿规律分析--关于找矿工作的战略思考.西安工程学院学报,21(4):46-50.
    [36]敬志成.2013.拉陵高里河下游铁铜矿床特征及找矿方向浅析.中国地质大学(北京)工程硕士学位论文.
    [37]孔德岩,胡莹.2014.青海省东昆仑夏日哈木矿区铜多金属矿床地质特征及控矿因素.青海大学学报(自然科学版),32(6):63-66.
    [38]Leite,E.P.,de Souza Filho,Carlos Roberto,2009a.Artificial neural networks applied to mineral potential mapping for copper-gold mineralization in the Carajás Mineral Province,Brazil.Geophysical Prospecting,57(6):1049-1065.
    [39]Leite,E.P.,Carlos Roberto,and de Souza Filho,2009b.Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region,Carajás Mineral Province,Brazil.Computers&Geosciences,35(3):675-687.
    [40]李玉春,李彬,陈静,张启梅.2013.东昆仑拉陵灶火矿区花岗闪长岩同位素特征及其地质意义.矿物岩石,33(3):110-115.
    [41]陆松年.2002.青藏高原北部前寒武纪地质初探.地质出版社,北京:1-125.
    [42]Mc Kay,G.,Harris,J.R.2015.Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping:a case study for gold deposits around the Huritz Group and Nueltin Suite,Nunavut,Canada.Natural Resources Research,DOI:10.1007/s11053-015-9274-z.
    [43]Moore,E.H.1920.On the reciprocal of the general algebraic matrix.Bulletin of the American Mathematical Society.26(9):394-395.
    [44]Nyk?nen V.2008.Radial basis functional link nets used as a potential mapping tool for orogenic gold deposits within the central lapland greenstone belt,northern Fennoscandian Shield.Natural Resources Research,17(1):29-48.
    [45]Oh,H.J.,Lee,S.2010.Application of artificial neural network for gold-silver deposits potential mapping:a case study of Korea.Natural Resources Research,19:103-124.
    [46]Porwal,A.,Carranza,E.J.M.,Hale,M.2003.Artificial neural networks for mineral potential mapping.Natural Resources Research,12:155-171.
    [47]Porwal A.,Carranza E.J.M.,Hale M.2006.Bayesian network classifiers for mineral potential mapping.Computers&Geosciences,32(1):1-16.
    [48]祁生胜,邓晋福,叶占福,刘荣,王国良.2013.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报,32(9):1385-1393.
    [49]Rodriguez-Galiano,V.F.,Chica-Olmo,M.,Chica-Rivas,M.2014.Predictive modelling of gold potential with the integration of multisource information based on random forest:a case study on the Rodalquilar area,Southern Spain.Int.J.Geogr.Inf.Sci.,28:1336-1354.
    [50]Serre,D.2002.Matrices:Theory and Applications.New York:Springer-Verlag.
    [51]Simon,H.D.,Zha,H.Y.2000.Low-rank matrix approximation using the Lanczos bidiagonalization process with applications.SIAMJ.Sci.Comput.,21(6):2257-2274.
    [52]Skabar,A.A.2003.Mineral potential mapping using feed-forward neural networks.Proceedings of the International Joint Conference on Neural Networks 3,1814-1819,Portland,OR,the United States,IEEE Press.
    [53]Skabar,A.A.2005.Mapping mineralization probabilities using multilayer perceptrons.Natural Resources Research,14:109-123.
    [54]Skabar,A.A.2007.Mineral potential mapping using Bayesian learning for multilayer perceptrons.Mathematical Geology,39(5):439-451.
    [55]王富春,陈静,谢志勇,李善平,谈生祥,张玉宝,王涛.2013.东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年.中国地质,40(4):1209-1217.
    [56]王冠,孙丰月,李碧乐,李世金,赵俊伟,奥琮,杨启安.2014.东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义.地学前缘(中国地质大学(北京);北京大学),21(6):381-401.
    [57]张照伟,李文渊,钱兵,王亚磊,李世金,刘长征,张江伟,杨启安,尤敏鑫,王治安.2015.东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义.中国地质,42(3):438-451.
    [58]郑健康.1992.东昆仑区域构造的发展演化.青海地质,1:17-25.
    [59]Zou,K.H.,O'Malley,A.J.,Mauri,L.2007.Receiver operatig characteristic analysis for evaluating diagnostic tests and predictive models.Circulation,115(5):654-657.
    [60]Zuo,R.,Carranza,E.J.M.2011.Support vector machine:a tool for mapping mineral potential.Computers&Geosciences,37:1967-1975.
    [61]Zweig,M.H.,Campbell,G.1993.Receiver-operating characteristic(ROC)plots:a fundamental evaluation tool in clinical medicine.Clinical Chemistry,39(4):561-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700