用户名: 密码: 验证码:
CuNiIn微动磨损涂层失效机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Failure Mechanism of Cu Ni In Fretting Wear Coatings
  • 作者:靳磊 ; 崔向中 ; 马国佳 ; 周国栋 ; 姜春竹 ; 李培忠
  • 英文作者:JIN Lei;CUI Xiang-zhong;MA Guo-jia;ZHOU Guo-dong;JIANG Chun-zhu;LI Pei-zhong;Beijing Aeronautical Manufacturing Technology Research Institute;Inner Mongolia Baotou Steel Rare-earth (Group) Hi-Tech Co.,Ltd.;
  • 关键词:六方CuNiIn ; 六方CuInO2 ; 机械性能 ; 第一原理
  • 英文关键词:hexagonal CuNiIn;;hexagonal CuInO2;;mechanical properties;;first principle
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:北京航空制造工程研究所高能束流加工技术重点实验室;内蒙古包钢稀土(集团)高科技股份有限责任公司;
  • 出版日期:2016-06-15
  • 出版单位:装备环境工程
  • 年:2016
  • 期:v.13
  • 基金:国防科技重点实验室基金(KZ104412)~~
  • 语种:中文;
  • 页:JSCX201603013
  • 页数:6
  • CN:03
  • ISSN:50-1170/X
  • 分类号:82-87
摘要
目的系统研究CuNiIn和CuInO_2的晶体结构、体模量、剪切模量、杨氏模量、泊松系数、韧性、热膨胀系数、残余应力等物理参量,阐明CuNiIn涂层中生成的其他复合化合物—CuInO_2对CuNiIn机械性能的影响作用机制。方法采用基于密度泛函理论的第一原理,弹性常数采用应力-应变方案,体模量、剪切模量、杨氏模量采用Voigt-Reuss-Hill方法计算。结果CuNiIn和CuInO_2均为机械稳定结构,CuNiIn和CuInO_2的体模量、剪切模量、杨氏模量、泊松系数分别为118.2GPa,13.7GPa,39.6GPa,0.44和119.0GPa,36.8GPa,100.1GPa,0.36。化合物CuInO_2的机械模量较CuNiIn高,韧性较差,热膨胀系数较低,涂层的残余应力较高。结论喷涂工艺不适,或CuNiIn涂层服役过程中生成的CuInO_2对微动磨损CuNiIn涂层服役性能有不利影响。
        Objective In this investigation, the crystal structure, bulk modulus, shear modulus, Young modulus, Poisson ratio, toughness, thermal expansion coefficients and residual stress of CuNiIn and CuInO_2 were inspected systematically, and the influencing mechanism of the material of Cu In O2 in CuNiIn coatings on the mechanism performance of CuNiIn was elucidated. Methods Elastic constants were obtained with stress-strain method using the first principles density function theory. Bulk, shear and Young modulus were obtained using Voigt-Reuss-Hill methods. Results The study indicated that CuNiIn and CuInO_2 were mechanically stable structures. The bulk modulus, shear modulus, Young modulus and poisson ratio for CuNiIn and CuInO_2 were 118.2 GPa, 13.7 GPa, 39.6 GPa, 0.44, and 119.0 GPa, 36.8 GPa, 100.1 GPa, 0.36, respectively. The mechanical modulus of CuInO_2 was higher than that of Cu Ni In. The toughness of CuInO_2 was poorer, the thermal expansion coeffieent was lower and the inner residual stress of CuInO_2 was higher than those of CuNiIn. Conclusion Improper spray process parameters or the CuInO_2 produced during the service process had negative effects on the service performance of CuNiIN fretting wear coatings.
引文
[1]LONG M,RACK H.Friction and Surface Behavior of Selected Titanium Alloys during Reciprocating Sliding Motion[J].Wear,2001,249(1/2):158—168.
    [2]FAYEULLE S,BLANCHARD P,VINCENT L.Fretting Behavior of Titanium Alloys[J].Tribology Transactions,1993,36:267—275.
    [3]刘道新,张必强,唐宾,等.钛合金表面离子束辅助沉积Cu Ni In固体润滑膜和Cr-N硬质膜[J].材料工程,1998(6):38—41.LIU Dao-xin,ZHANG Bi-qiang,TANG Bin,et al.Ion-beam-assisted Deposition of Cu Ni In Solid Lubricating Film and Cr-N Hard Film on Titanium Alloys[J].Journal of Materials Engineering,1998(6):38—41.
    [4]HAGER C H,SANDERS J,SHARMA S,et al.Gross Slip Fretting Wear of Cr CN,Ti Al N,Ni and Cu Ni In Coatings on Ti6Al4V Interfaces[J].Wear,2007,263:430—443.
    [5]MARY C,FOUVRY S,MARTIN J M,et al.High Temperature Fretting Wear of a Ti alloy/Cu Ni In Contact[J].Surface&Coatings Technology,2008,203:691—698.
    [6]郭志宏,王辉,张淑婷,等.电弧喷涂Cu Ni In抗微动磨损涂层性能研究[J].热喷涂技术,2013,5(4):33—38.GUO Zhi-hong,WANG Hui,ZHANG Shu-ting,et al.Study on the Properties of Arc Sprayed Cu Ni In Coating[J].Thermal Spray Technology,2013,5(4):33—38.
    [7]朱晨,孙波,程涛涛,等.飞机发动机风扇叶片Cu Ni In涂层等离子喷涂的工艺优化[J].材料保护,2015,48(2):37—39.ZHU Chen,SUN Bo,CHENG Tao-tao,et al.Process Optimization for Aircraft Engine Fan Blade Cu Ni In Prepared by Plasma Spraying Coating[J].Materials Protection,2015,48(2):37—39.
    [8]吴贵智,张广安,蒲吉斌,等.航空发动机叶片榫头润滑及抗高温微动Cu Ni In/Mo S2多层涂层的制备及性能[C]//第十届全国表面工程大会暨第六届全国青年表面工程论坛论文集.武汉:中国机械工程协会,中国表面工程协会,2014:72—74.WU Gui-zhi,ZHANG Guang-an,PU Ji-bin,et al.Lubrication for Aircraft Engine Blade Joint and Preparation and Performance for High Temperature Cu Ni In/Mo S2 Resistance Fretting Wear Multilayer Coatings[C]//The 10th National Conference on Surface Engineering and the Sixth National Youth Surface Engineering Forum.Wuhan:China Mechanical Engineering Association,China Surface Engineering Association,2014:72—74.
    [9]RAMAN K,GUPTA R S,SUJIR R K,et al.Lattice Constants of B8-structure in Cu2In-Ni2In Alloys[J].Journal of Scientific Research of the Banaras Hindu University,1964,14:95—99.
    [10]KANDPAL H C,SESHADRI R.First-principles Electronic Structure of the Delafossites ABO2(A=Cu,Ag,Au;B=Al,Ga,Sc,In,y):Evolution of d(10)-d(10)Interactions[J].Solid State Sciences,2002,4(8):1045—1052.
    [11]SEGALL M D,LINDAN P J D,PROBERT M J,et al.First-principles Simulation:Ideas,Illustrations and the CASTEP Code[J].Journal of Physics,Condensed Matter,2002,14(11):2717—2721.
    [12]LIU Wen-ting,LIU Qi-jun,LIU Zheng-tang.First-principles Studies of Structural,Mechanical,Electronic,Optical Properties and Pressure-induced Phase Transition of Cu In O2 Polymorph[J].Physica B,2012,407(24):4665—4670.
    [13]黎明明.第一性原理探索新型超硬材料[D].长春:吉林大学,2014.LI Ming-ming.Exploring Novel Superhard Materials from the First Principles Calculations[D].Changchun:Jilin University,2014.
    [14]Hill R.The Elastic Behavior of a Crystalline Aggregate[J].Proceedings of the Physical Society A,1952,65(5):349—354.
    [15]HAINES J,LéGER J.M,BOCQUILLON G.Synthesis and Design of Superhard Materials[J].Annual Review of Materials Research,2001,31:1—23.
    [16]TETER D M.Computational Alchemy:The Search for New Superhard Materials[J].MRS Bulletin,1998,23(1):22—27.
    [17]BRAZHKIN V V,LYAPIN A G,HEMLEY R J.Harder Than Diamond:Dreams and Reality[J].Philosophical Magazine A,2002,82(2):231—253.
    [18]JHI S H,IHM J,LOUIE S G,et al.Electronic Mechanism of Hardness Enhancement in Transition-metal Carbonitrides[J].Nature,1999,399:132—134.
    [19]PUGH S F.Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals[J].Philosophical Magazine,1954,45(367):823—827.
    [20]GILMAN J J.Electronic Basis of the Strength of Materials[M].Cambridge:Cambridge University Press,2003.
    [21]GAO F,HE J L,WU E D,et al.Hardness of Covalent Crystals[J].Physical Review Letters,2003,91(1):1—4.
    [22]STONEY G G.The Tension of Metallic Films Deposited by Electrolysis[J].Proceedings of the Royal Society of London Series A,1909,82(553):172—175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700