用户名: 密码: 验证码:
介质阻挡放电辅助甲烷蒸汽重整的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of the Dielectric Barrier Discharge-aided Steam Reforming of Methane
  • 作者:郑洪涛 ; 刘倩 ; 陈曦 ; 张智博
  • 英文作者:ZHENG Hong-tao;LIU Qian;CHEN Xi;ZHANG Zhi-bo;College of Power and Energy Engineering,Harbin Engineering University;
  • 关键词:介质阻挡放电 ; 甲烷蒸汽重整 ; 壁面温度 ; 燃气轮机 ; 化学回热器 ; 实验研究
  • 英文关键词:dielectric barrier discharge,steam reforming of methane,wall surface temperature,gas turbine,chemical recuperator,experimental study
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:哈尔滨工程大学动力与能源工程学院;
  • 出版日期:2014-03-20
  • 出版单位:热能动力工程
  • 年:2014
  • 期:v.29;No.170
  • 语种:中文;
  • 页:RNWS201402008
  • 页数:7
  • CN:02
  • ISSN:23-1176/TK
  • 分类号:35-40+111
摘要
利用介质阻挡放电辅助甲烷蒸汽重整试验平台进行了大量试验,基于试验数据系统地分析了350-500℃温度下蒸汽甲烷摩尔比(S/C)、反应物驻留时间、壁面温度及输入功率等对甲烷转化率、有效碳回收率及产物选择性等指标的影响规律,并考察了不同影响因素之间的相互作用关系。研究发现:驻留时间对各指标的影响最为明显,在不同壁面温度下,随着驻留时间的增加,产物选择性出现转折性变化,由60%左右下降到20%左右;与驻留时间的影响不同,随着输入功率或S/C的增加,重整特性的各评价指标均呈现缓慢增长趋势;而温度对等离子体辅助甲烷蒸汽重整结果是否有影响与驻留时间、输入功率等参数有关,只有当驻留时间大于0.59 s时,温度对重整反应的影响变得较小,且当输入功率也大于80 W时,温度对重整反应不再有影响。
        With a great number of experiments performed by making use of an dielectric barrier discharge( DBD)-aided methane steam reforming test rig and based on the test data thus obtained,systematically analyzed was a law governing the influence of the steam /methane molar ratio( S /C),reactant residence time,wall surface temperature and input power etc. on the methane conversion rate,effective carbon recovery rate and product selectivity etc. indexes and investigated was the correlation of various influencing factors at temperatures from 350 ℃ to 500 ℃. It has been found that the residence time has a most remarkable influence on various indexes. At different wall surface temperatures,with an increase of the residence time,the product selectivity will change with a turning point,declining from about60% to around 20%. Different from the influence of the residence time,various indexes for evaluating the reforming characteristics will all assume a slow growth tendency with an increase of the input power or S /C. Whether or not the temperature will affect the steam reforming of methane aided by the plasma is relevant to the residence time and input power etc. parameters. Only when the residence time is longer than 0. 59 seconds,will the influence of the temperature on the reforming reaction become relatively small. In addition,when the input power is also greater than80 W,the temperature will no longer affect the reforming reaction.
引文
[1]谭智勇,刘顺隆,郑洪涛.燃气轮机化学回热循环仿真研究[J].哈尔滨工业大学学报,2010,42(1):148-151.TAN Zhi-yong,LIU Shun-long,ZHENG Hong-tao.Simulation research of a chemical recuperation cycle for gas turbines[J].Journal of Harbin Institute of Technology.2010,42(1):148-151.
    [2]徐长松,郑洪涛,谭智勇,等.水碳比对化学回热循环回热效率影响分析[J].哈尔滨商业大学学报(自然科学版),2010,26(5):600-603.XU Chang-song,ZHENG Hong-tao,TAN Zhi-yong,et al.Analysis of the influence of the water/carbon ratio on the recuperation efficiency of a chemical recuperation cycle[J].Journal of Harbin University of Commerce(Natural Sciences Edition).2010,26(5):600-603.
    [3]Schdel BT,Duisberg M,Deutschmann O.Steam reforming of methane,ethane,propane,butane,and natural gas over a rhodium-based catalyst[J].Catalysis Today,2009(142):42-51.
    [4]Hammer T,Kappes T,Baldauf M.Plasma catalytic hybrid processes:Gas discharge initiation and plasma activation of catalytic processes[J].Catalysis Today,2004(89):5-14.
    [5]颜士鑫,李晓东,钟犁,等.滑动弧等离子体协助甲烷蒸汽重整制氢[J]太阳能学报,2011,32(5):766-770.YAN Shi-xin,LI Xiao-dong,ZHONG Li,et al.Preparation of hydrogen by steam reforming of methane assisted by sliding arc plasma[J].Acta Energiae Solaris Sinica,2011,32(5):766-770.
    [6]Sugasawa M,Terasawa T,Futamura S.Effects of initial water content on steam reforming of aliphatic hydrocarbons with nonthermal plasma[J].Journal of Electrostatics,2010,68:212-217.
    [7]ZHANG Xu,WANG Bao-wei,LIU Yong-wei,et al.Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge[J].Chinese Journal of Chemical Engineering,2009,17(4):625-629.
    [8]Wang Ya-Fen,Tsai Cheng-Hsien,Chang Wan-Yu,Kuo Yi-Ming.Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor[J].International Journal of Hydrogen Energy,2010,35:135-140.
    [9]Nozaki T,Muto N,Kado S,Okazaki K.Dissociation of vibrationally excited methane on Ni catalyst Part 1.Application to methane steam reforming[J].Catalysis Today,2004,89:57-65.
    [10]许根慧,姜恩永,盛京.等离子技术与应用[M].北京:化学工业出版社,2006.XU Gen-hui,JIANG En-yong,SHENG Jing.Plasma technology and applications[M].Beijing:Chemical Industry Press,2006.47-48.
    [11]Hagelaar GJM,Pitchford LC.Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J].Plasma Sources Science and Technology,2005(14):722-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700