用户名: 密码: 验证码:
基于三维实体建模的刷式密封传热机理数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling
  • 作者:孙丹 ; 李国勤 ; 艾延廷 ; 刘永泉 ; 战鹏 ; 信琦
  • 英文作者:SUN Dan;LI Guoqin;AI Yanting;LIU Yongquan;ZHAN Peng;XIN Qi;Liaoning Key Lab of Advanced Test Technology for Aerospace Propulsion System,School of Aero-Engine,Shenyang Aerospace University;Key Lab for Power Transmission of Aero Engine,Shenyang Engine Research Institute,Aero Engine Corporation of China;
  • 关键词:刷式密封 ; 三维实体建模 ; 温度分布 ; 摩擦热量 ; 传热机理
  • 英文关键词:brush seal;;three-dimensional solid modeling;;temperature distribution;;friction heat;;heat transfer mechanism
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:沈阳航空航天大学航空发动机学院辽宁省航空推进系统先进测试技术重点实验室;中国航空发动机集团有限公司沈阳发动机研究所航空发动机动力传输航空科技重点实验室;
  • 出版日期:2019-08-06
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(51675351);; 中国博士后科学基金(2018M633572);; 辽宁省高等学校创新人才支持计划项目(LR2016033)
  • 语种:中文;
  • 页:HKDI201908001
  • 页数:11
  • CN:08
  • ISSN:11-2297/V
  • 分类号:7-17
摘要
建立了基于三维实体建模的刷式密封传热特性求解模型,在验证数值模型准确性的基础上,分析了刷式密封流场与温度场分布特性,研究了压比、转速、干涉量和热流密度对刷丝最高温度的影响,揭示了刷式密封的传热机理。结果表明:高温区主要集中在末排刷丝与转子面接触位置,刷丝的最高温度随着压比、转速、干涉量和热流密度增加而增大,其中干涉量对刷丝最高温度的影响最为明显。当干涉量从0.1mm增至0.7mm时,刷丝的最高温度上升1.61倍;刷式密封热量的主要来源为刷丝与转子表面摩擦产生的热量,其传热形式包括导热和对流换热,摩擦热量通过导热形式进入刷丝和转子,当刷丝与转子之间的接触力增加时,摩擦热量增大,刷丝的最高温度升高,摩擦热量通过对流换热形式在流体和固体之间进行传递,热量散失主要形式为泄漏气流带走部分热量。
        A model for solving the heat transfer characteristics of brush seals based on three-dimensional solid modeling was established.The distribution characteristics of the flow field and temperature field of the brush seal were analyzed by verifying the accuracy of the numerical model.The influences of the pressure ratio,the rotational speed and the interference on the maximum temperature of the brush wire were studied.The heat transfer mechanism of the brush seal was revealed.The results showed that the end-discharge brush wire and the rotor face were mainly concentrated in the high temperature area of the bristle.The maximum temperature of the brush wire increased with the increase of the pressure ratio,rotational speed and interference,in which the interference had obvious influence on the maximum temperature.When the amount of interference increased from 0.1 mm to 0.7 mm,the maximum temperature increased 1.61 times;The main source of heat of the brush seal was generated by friction between the brush and the rotor surface,the heat transfer form of the brush seal included conduction heat and convection heat exchange.The friction heat flow entered the brush wire bundle and the rotating shaft through the heat conduction form.When the contact force between the brush wire and the rotor increased,the frictional heat flux increased,and the maximum temperature rose.The friction heat flowed through the heat transfer between fluid and solid transmission,and the main form of heat dissipation was the leakage of air taking away part of the heat.
引文
[1]李军,晏鑫,宋立明,等.透平机械密封技术研究进展[J].热力透平,2008,37(3):141-148.LI Jun,YAN Xin,SONG Liming,et al.A review of sealing technologies in turbomachinery[J].Thermal Turbine,2008,37(3):141-148.(in Chinese)
    [2]柴保桐,傅行军.刷式密封流场和温度场数值模拟[J].润滑与密封,2016,41(2):121-125.CHAI Baotong,FU Xingjun.Numerical simulation on flow and temperature distributions of brush seals[J].Lubrication Engineering,2016,41(2):121-125.(in Chinese)
    [3]邱波,李军.刷式密封流动与换热及力学特性的研究进展[J].热力透平,2013,42(3):141-149.QIU Bo,LI Jun.A review of flow and heat transfer,mechanical characteristics of brush seals[J].Thermal Turbine,2013,42(3):141-149.(in Chinese)
    [4]HENDRICKS R C,SCHLUMBERGER S,BRAUN M J,et al.A bulk flow model of a brush seal system[R].ASMEPaper 91-GT-325,1991.
    [5]DEMIROGLU M,TICHY J A.An investigation of heat generation characteristics of brush seals[R].ASME Paper GT2007-28043,2007.
    [6]DOGU Y,AKSIT M F.Brush seal temperature distribution analysis[J].Engineering for Gas Turbines and Power,2006,128(3):599-609.
    [7]李理科,王之栎,宋飞,等.刷式密封温度场数值研究[J].航空动力学报,2010,25(5):1018-1024.LI Like,WANG Zhili,SONG Fei,et al.Numerical investigation of temperature field in brush seals[J].Journal of Aerospace Power,2010,25(5):1018-1024.(in Chinese)
    [8]丁水汀,陶智,徐国强.刷式封严流动和换热的数值模拟[J].推进技术,1999,20(1):65-67.DING Shuiting,TAO Zhi,XU Guoqiang.Numerical simulation on fluid flow and heat transfer of a brush seal configuration[J].Journal of Propulsion Technology,1999,20(1):65-67.(in Chinese)
    [9]邱波,李军.刷式密封传热特性研究[J].西安交通大学学报,2011,45(9):94-100.QIU Bo,LI Jun.Investigation on the heat transfer characteristics of brush seals[J].Journal of Xian Jiaotong University,2011,45(9):94-100.(in Chinese)
    [10]邱波,李军,陈春新,等.基于CFD和FEM方法的刷式密封传热特性研究[J].工程热物理学报,2012,33(12):2067-2071.QIU Bo,LI Jun,CHEN Chunxin,et al.Investigations on the heat transfer characteristics of brush seals based on computational fluid dynamics and finite element analysis[J].Journal of Engineering Thermophysics,2012,33(12):2067-2071.(in Chinese)
    [11]邱波,李军,丰镇平.考虑刷丝变形的刷式密封摩擦热效应研究[J].工程热物理学报,2013,34(11):2030-2034.QIU Bo,LI Jun,FENG Zhenping.Investigations on fritional heat generation of brush seals with consideration of bristle deflections[J].Journal of Engineering Thermophysics,2013,34(11):2030-2034.(in Chinese)
    [12]张元桥,闫嘉超,李军.刷式密封泄漏和传热特性影响因素的数值研究[J].推进技术,2018,39(1):116-124.ZHANG Yuanqiao,YAN Jiachao,LI Jun.Numerical investigations on influence factors of leakage flow and heat transfer characteristics of brush seal[J].Journal of Propulsion Technology,2018,39(1):116-124.(in Chinese)
    [13]孙丹,刘宁宁,胡广阳,等.考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J].航空动力学报,2016,31(10):2544-2553.SUN Dan,LIU Ningning,HU Guangyang,et al.Fluidstructure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflections[J].Journal of Aerospace Power,2016,31(10):2544-2553.(in Chinese)
    [14]孙丹,白伟钢,刘宁宁,等.基于能量法的刷式密封刷丝颤振流固耦合研究[J].推进技术,2018,39(3):619-629.SUN Dan,BAI Weigang,LIU Ningning,et al.Fluid-solid interaction study of brush seals bristle flutter with energy method[J].Journal of Propulsion Technology,2018,39(3):619-629.(in Chinese)
    [15]黄首清,索双富,李永健,等.刷式密封流场和温度场的3维数值计算[J].清华大学学报(自然科学版),2014,54(6):805-810.HUANG Shouqing,SUO Shuangfu,LI Yongjian,et al.Numerical predictions of the flow and temperature distributions in a three dimensional brush seal model[J].Journal of Tsinghua University(Science and Technology),2014,54(6):805-810.(in Chinese)
    [16]FELLENSTEIN J A,DELLACORTE C,MOORE K D,et al.High temperature brush seal tuft gesting of selected nickel-chrome and cobalt-chrome superalloys[R].NASATM-107497,1997.
    [17]刘占生,叶建槐.刷式密封接触动力学特性研究[J].航空动力学报,2002,17(5):635-640.LIU Zhansheng,YE Jianhuai.Research on structural dynamic characteristics of brush seals[J].Journal of Aerospace Power,2002,17(5):635-640.(in Chinese)
    [18]DEMIROGLU M,GURSOY M,TICHY J A.An investigation of tip force characteristics of brush seals[R].ASMEPaper GT2007-28042,2007.
    [19]CRUDGINGTON P F,BOWSHER A,LLOYD D.Bristle angle effects on brush seal contact pressures[R].AIAA-2009-5168,2009.
    [20]YAKHOT V,ORSZAG S A.Renormalization group analysis of turbulence.I.Basic theory[J].Journal of Scientific Computing,1986,1(1):3-51.
    [21]孔繁余,陈浩,王婷,等.基于流固耦合的减压塔底泵泵体强度分析[J].机械工程学报,2013,49(2):159-164.KONG Fanyu,CHEN Hao,WANG Ting,et al.Strength analysis of decompression tower bottom pumps pump casing based on fluid-solid coupling[J].Journal of Mechanical Engineering,2013,49(2):159-164.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700