用户名: 密码: 验证码:
重金属固定植物促生细菌的筛选及其阻控小麦富集重金属效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation of Heavy Metal Immobilizing and Plant Growth-Promoting Bacteria and Its Effects on Reducing Heavy Metal Accumulation in Wheat
  • 作者:韩辉 ; 王晓宇 ; 蔡红 ; 姚伦广 ; 蔡倩迪 ; 王逸雪 ; 陈兆进
  • 英文作者:HAN Hui;WANG Xiao-yu;CAI Hong;YAO Lun-guang;CAI Qian-di;WANG Yi-xue;CHEN Zhao-jin;Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province,School of Agricultural Engineering,Nanyang Normal University;School of Life Science and Technology,Nanyang Normal University;
  • 关键词:植物促生细菌(PGPB) ; 重金属固定 ; 小麦 ; 脲酶 ; 吸附
  • 英文关键词:plant growth-promoting bacteria(PGPB);;heavy metal immobilization;;wheat;;urease;;absorption
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南阳师范学院农业工程学院南水北调中线水源区水安全河南省协同创新中心;南阳师范学院生命科学与技术学院;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41601332);; 河南省科技攻关计划项目(172102110259)
  • 语种:中文;
  • 页:HJKZ201907045
  • 页数:8
  • CN:07
  • ISSN:11-1895/X
  • 分类号:381-388
摘要
由于工业和采矿业等人类的活动造成农田土壤Cd和Pb污染日益严重,并可通过食物链严重影响人类健康,必须采取有效措施阻控农作物对重金属的吸收.本研究依据细菌的重金属抗性和植物促生特性筛选功能菌株,并通过摇瓶吸附实验和小麦砂培实验验证其对小麦生长和阻控小麦吸收Cd和Pb的影响.结果显示,从狗尾草根际土壤中共分离到具有固定重金属和促生能力的菌株18株,其中巨大芽孢杆菌N3和液质沙雷氏菌H12效果最好,均能抵抗高质量浓度的Cd(650mg·L~(-1))和Pb(2 700 mg·L~(-1)),分泌吲哚乙酸(IAA)(56. 6 mg·L~(-1)和69. 1 mg·L~(-1))、铁载体和1-氨基环丙烷羧酸(ACC)脱氨酶.静置培养实验表明,菌株N3和H12显著提高溶液中NH4+的质量浓度和p H值,降低溶液中Cd(63. 1%~73. 8%)和Pb(69. 1%~81. 8%)的质量浓度.砂培条件下,与不接菌相比,菌株N3和H12不仅能够显著增加小麦根(47. 2%~97. 4%)和地上部(65. 3%~153%)的干重,还能够显著降低小麦根和地上部中Cd(49. 2%~68. 3%)和Pb(27. 4%~84. 5%)的含量.本研究结果为Cd、Pb污染农田的修复和农作物的安全生产提供菌种资源和理论依据.
        The effects of heavy metal contamination on farmland continues to worsen progressively with an increase in anthropogenic activities such as industrial pollution and mining. Excess Cd and Pb in agricultural soils enter the food chain and adversely affect all organisms. Therefore,it is important to find an eco-friendly way to reduce heavy metal accumulation in crops. Based on their heavy metal resistance and growth-promoting characteristics,functional bacterial strains were screened and their effects on growth and heavy metal accumulation in wheat were verified via shaking flask adsorption and sand culture tests. Eighteen functional strains were isolated from the rhizospheric soil of Salvia setaria. Among them,Bacillus megaterium N3 and Serratia liquefaciens H12 were most effective at resisting high Cd( 650 mg·L~(-1)) and Pb( 2 700 mg·L~(-1)) concentrations,and at producing indole-3-acetic acid( IAA)( 56. 6 mg·L~(-1) and 69. 1 mg·L~(-1),respectively),siderophores,and 1-Amino-1-cyclopropanecarboxylic acid( ACC) deaminase. Static incubation experiments showed that strains N3 and H12 significantly increased the NH4+concentration and p H,and decreased the Cd( 63. 1%-73. 8%) and Pb( 69. 1%-81. 8%) concentration in solution. In sand cultures,strains N3 and H12 not only increased the dry weight of wheat roots( 47. 2%-97. 4%) and shoots( 65. 3%-153%) significantly,but also significantly reduced the Cd( 49. 2%-68. 3%) and Pb( 27. 4%-84. 5%) content in wheat roots and shoots. Thus,the results provide strain resources and a theoretical basis for the remediation of Cd-and Pb-contaminated farmlands for the safer production of crops.
引文
[1] Chen L,He L Y,Wang Q,et al. Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper[J]. Journal of Hazardous Materials,2016,312:123-131.
    [2] Wu C,Shi L Z,Xue S G,et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment,2019,647:1158-1168.
    [3]靳琪,高红,岳波,等.村镇生活垃圾重金属含量及其来源分析[J].环境科学,2018,39(9):4385-4392.Jin Q,Gao H,Yue B,et al. Heavy metal content of rural living solid waste and related source and distribution analysis[J].Environmental Science,2018,39(9):4385-4392.
    [4]陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017,36(9):1689-1692.Chen N C,Zheng Y J,He X F,et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science,2017,36(9):1689-1692.
    [5] Mackie K A,Marhan S,Ditterich F,et al. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard[J]. Agriculture,Ecosystems&Environment,2015,201:58-69.
    [6] Wan Y N,Camara A Y,Yu Y,et al. Cadmium dynamics in soil pore water and uptake by rice:Influences of soil-applied selenite with different water managements[J]. Environmental Pollution,2018,240:523-533.
    [7]赵军超,王权,任秀娜,等.钙基膨润土辅助对堆肥及土壤Cu、Zn形态转化和白菜吸收的影响[J].环境科学,2018,39(4):1926-1933.Zhao J C,Wang Q,Ren X N,et al. Effect of Ca-bentonite on Cu and Zn forms in compost and soil,and their absorption by Chinese cabbage[J]. Environmental Science,2018,39(4):1926-1933.
    [8]曾希柏,徐建明,黄巧云,等.中国农田重金属问题的若干思考[J].土壤学报,2013,50(1):186-194.Zeng X B,Xu J M,Huang Q Y,et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica,2013,50(1):186-1954.
    [9]韩蕾,陈娟,杜平,等.不同钝化剂对Cd污染农田土壤生态安全的影响[J].环境科学研究,2018,31(7):1289-1295.Han L,Chen J,Du P,et al. Assessing the ecological security of the cadmium contaminated farmland treated with different amendments[J]. Research of Environmental Science,2018,31(7):1289-1295.
    [10]余斐,苏艳,李吉跃,等.植物根际促生菌促生机理研究[J].林业与环境科学,2017,33(2):107-112.Yu F,Su Y,Li J Y,et al. Plant growth-promoting rhizobacteria promoting mechanism research[J]. Forestry and Environmental Science,2017,33(2):107-112.
    [11] Sharma R K,Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria[J].Applied Soil Ecology,2016,107:66-78.
    [12] Lin X Y,Mou R X,Cao Z Y,et al. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains[J]. Science of the Total Environment,2016,569-570:97-104.
    [13] Ahmad M,Ok Y S,Rajapaksha A U,et al. Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars:Chemical, microbial and spectroscopic assessments[J]. Journal of Hazardous Materials,2016,301:179-186.
    [14] Marques A P G C,Moreira H,Franco A R,et al. Inoculating Helianthus annuus(sunflower)grown in zinc and cadmium contaminated soils with plant growth promoting bacteria-Effects on phytoremediation strategies[J]. Chemosphere,2013,92(1):74-83.
    [15] Han H,Wang Q,He L Y,et al. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cdimmobilizing and polyamine-producing bacteria[J]. Journal of Hazardous Materials,2018,353:280-289.
    [16] Chang B V,Yu C H,Yuan S Y. Degradation of nonylphenol by anaerobic microorganisms from river sediment[J]. Chemosphere,2004,55(4):493-500.
    [17]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000. 86-115.
    [18] Jiang C Y, Sheng X F, Qian M, et al. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metalpolluted soil[J]. Chemosphere,2008,72(2):157-164.
    [19] Rajkumar M,Nagendran R,Lee K J,et al. Influence of plant growth promoting bacteria and Cr6+on the growth of Indian mustard[J]. Chemosphere,2006,62(5):741-748.
    [20] Belimov A A,Hontzeas N,Safronova V I,et al. Cadmiumtolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern.)[J]. Soil Biology and Biochemistry,2005,37(2):241-250.
    [21] Bai J H,Wang Q G,Gao H F,et al. Spatial and temporal distribution patterns of nitrogen in marsh soils from an inland alkaline wetland-A case study of Fulaowenpao wetland,China[J]. Acta Ecologica Sinica,2010,30(4):210-215.
    [22]刘瑞,于章龙,薛冲,等.市售豆芽携带细菌种属鉴定及酸性电解水的杀菌效果[J].食品科学,2017,38(17):168-173.Liu R,Yu Z L,Xue C,et al. Identification of bacterial species and microbial inactivation by acidic electrolyzed water on commercial bean sprouts[J]. Food Science,2017,38(17):168-173.
    [23]龚梦丹,朱维琴,顾燕青,等.杭州蔬菜基地重金属污染及风险评价[J].环境科学,2016,37(6):2329-2337.Gong M D,Zhu W Q,Gu Y Q,et al. Evaluation on heavy metal pollution and its risk in soils from vegetable bases of Hangzhou[J]. Environmental Science,2016,37(6):2329-2337.
    [24] Wang D F,Zhang G L,Zhou L L,et al. Immobilizing arsenic and copper ions in manure using a nanocomposite[J]. Journal of Agricultural and Food Chemistry,2017,65(41):8999-9005.
    [25]刘德玲,尹光彩,陈志良,等.硅酸钙和生物腐殖肥复配对葱生长和镉吸收的影响[J].环境科学,2018,39(6):2927-2935.Liu D L,Yin G C,Chen Z L,et al. Effect of calcium silicatebiological humus fertilizer composite on uptake of Cd by shallots from contaminated agricultural soil[J]. Environmental Science,2018,39(6):2927-2935.
    [26]王欣,尹带霞,张凤,等.生物炭对土壤肥力与环境质量的影响机制与风险解析[J].农业工程学报,2015,31(4):248-257.Wang X,Yin D X,Zhang F,et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(4):248-257.
    [27] Ma Y,Prasad M N V, Rajkumar M,et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258.
    [28] Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues:Mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety,2018,147:175-191.
    [29] Xu Q R,Pan W,Zhang R R,et al. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces Irt1-mediated Cadmium uptake of roots[J]. Journal of Agricultural and Food Chemistry,2018,66(20):5229-5236.
    [30] Babu A G,Shea P J,Sudhakar D,et al. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil[J]. Journal of Environmental Management,2015,151:160-166.
    [31] Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum,2009,31(4):861-864.
    [32] Bai J,Yang X H,Du R Y,et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences,2014,26(10):2056-2064.
    [33]陈远其,张煜,陈国梁.石灰对土壤重金属污染修复研究进展[J].生态环境学报,2016,25(8):1419-1424.Chen Y Q,Zhang Y,Chen G L. Remediation of heavy metal contaminated soils by lime:a review[J]. Ecology and Environmental Sciences,2016,25(8):1419-1424.
    [34] Huang J H,Yuan F,Zeng G M,et al. Influence of pH on heavy metal speciation and removal from wastewater using micellarenhanced ultrafiltration[J]. Chemosphere,2017,173:199-206.
    [35] Xu C R, He S B, Liu Y M, et al. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU[J].Chemosphere,2017,173:622-629.
    [36] Gresham T L T,Sheridan P P,Watwood M E,et al. Design and validation of ureC-based primers for groundwater detection of urea-hydrolyzing bacteria[J]. Geomicrobiology Journal,2007,24(3-4):353-364.
    [37] Fisher K A,Yarwood S A,James B R. Soil urease activity and bacterial ureC gene copy numbers:effect of pH[J]. Geoderma,2017,285:1-8.
    [38] Yang Y F,Gao Y,Wang S P,et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J].The ISME Journal,2014,8(2):430-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700