用户名: 密码: 验证码:
自冷却高速电主轴风扇叶片的研究与设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and Design of Fan Bade in Fan-cooled High-speed Motorized Spindle
  • 作者:黄栋 ; 莫爵贤 ; 施维 ; 雷群
  • 英文作者:HUANG Dong;MO Juexian;SHI Wei;LEI Qun;Guangdong Institute of Intelligent Manufacturing;Guangzhou Haozhi Industrial Co., Ltd.;
  • 关键词:自冷 ; 高速电主轴 ; 风扇叶片 ; CFD
  • 英文关键词:Self-cooled;;High-speed motorized spindle;;Fan blade;;CFD
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:广东省智能制造研究所;广州市昊志机电股份有限公司;
  • 出版日期:2019-07-15
  • 出版单位:机床与液压
  • 年:2019
  • 期:v.47;No.487
  • 基金:广州市科技计划项目(201604016130;201807010023);; 广东省科技计划项目(2015B010136005;2016B090918121;2017A040405041)
  • 语种:中文;
  • 页:JCYY201913011
  • 页数:5
  • CN:13
  • ISSN:44-1259/TH
  • 分类号:55-59
摘要
以自扇冷却高速电主轴为研究对象,分别采用解析法和计算流体力学(CFD)方法对电主轴冷却风扇的工作风量进行计算和对比分析,同时研究了叶片数量、叶片型式对风量和风压的影响,并在此基础上对风扇叶片进行了优化设计。结果表明:采用计算流体力学方法获得的风量与解析法计算得到的结果基本一致;叶片数在9扇叶时该风扇具有较好的性能;径向式叶片能提供更大的风压,但其风量不一定更大,风量与风压中的静压有关,静压值越大,风量越大;改进后的风扇与原型相比,性能更加优良,风量提升了23.6%。
        The analytic method and computational fluid dynamics(CFD) simulations are employed in calculating and comparative analysis on flow of the fan based on fan-cooled high speed motorized spindle. The influence of blade number and blade type on cooling air volume and total pressure was studied, and an improvement design scheme was proposed. The results show that the cooling air volume confirmed by the CFD simulations agrees with the one obtained by analytic method. The fan has good performance in 9 blades. The radial blade can provide higher total pressure, but its cooling air volume may not be larger. The cooling air volume is related to the static pressure in the total pressure, and the larger the static pressure value, the larger is the cooling air volume. The improved fan is better in performance compared to the prototype, and the air volume is increased by 23.6%.
引文
[1]邵珠章,马文琦,熊贵超,等.空气静压电主轴径向止推联合轴承承载特性[J].润滑与密封,2017,42(9):43-46.SHAO Z Z,MA W Q,XIONG G C,et al.Load Capacity of Combined Radial-thrust Gas Bearing of Aerostatic Motorized Spindle[J].Lubrication Engineering,2017,42(9):43-46.
    [2]肖曙红,张伯霖,陈焰基,等.高速电主轴关键技术的研究[J].组合机床与自动化加工技术,1999(12):5-10.XIAO S H,ZHANG B L,CHEN Y J,et al.Study on the Key Technologies of High Speed Motorized Spindle[J].Modular Machine Tool & Automatic Manufacturing Technique,1999(12):5-10.
    [3]邓星钟,朱承高.机电传动控制[M].3版.武汉:华中科技大学出版社,2002.
    [4]陈学振,龚清洪,夏远猛,等.油气润滑电主轴测试平台的设计与实现[J].润滑与密封,2018,43(11):108-114.CHEN X Z,GONG Q H,XIA Y M,et al.Design and Implementation of Testing Platform for Oil and Gas Lubricated Motorized Spindle[J].Lubrication Engineering,2018,43(11):108-114.
    [5]马大国,姜新波,马岩.木工机械用高速电主轴的设计及动力学分析[J].木材加工机械,2012(3):33-36.MA D G,JIANG X B,MA Y.Design and Analysis of Dynamic Characteristics of Motorized Spindle for High Speed Wood-Working Machinery[J].Wood Processing Machinery,2012(3):33-36.
    [6]张伟.木材加工高速电主轴技术研究进展[J].木材加工机械,2008(3):26-28.ZHANG W.Development of High Speed Electric Spindle Technology for Wood Processing[J].Wood Processing Machinery,2008(3):26-28.
    [7]陈世坤.电机设计[M].北京:机械工业出版社,2000.
    [8]黄国治,傅丰礼.Y2系列三相异步电动机技术手册[M].北京:机械工业出版社,2004.
    [9]韩占忠,王敬,兰小平.FLUENT流体工程仿真技术实例与应用[M].北京:北京理工大学出版社,2004.
    [10]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700