用户名: 密码: 验证码:
石墨烯太赫兹波段性质及石墨烯基太赫兹器件
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Terahertz Properties of Graphene and Graphene-Based Terahertz Devices
  • 作者:周译玄 ; 黄媛媛 ; 靳延平 ; 姚泽瀚 ; 何川 ; 徐新龙
  • 英文作者:Zhou Yixuan;Huang Yuanyuan;Jin Yanping;Yao Zehan;He Chuan;Xu Xinlong;Shaanxi Joint Lab of Graphene, Institute of Photonics & Photon-Technology, School of Physics,Northwest University;
  • 关键词:太赫兹技术 ; 石墨烯 ; 调制器 ; 太赫兹源 ; 阻抗匹配 ; 超材料
  • 英文关键词:terahertz technology;;graphene;;modulator;;terahertz source;;impedance matching;;metamaterial
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:西北大学物理学院光子学与光子技术研究所陕西省石墨烯联合实验室;
  • 出版日期:2019-04-25 11:38
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.510
  • 基金:国家自然科学基金(11774288,61605160);; 陕西省自然科学基金(2017KCT-01,2019JC-25,2019JM-236)
  • 语种:中文;
  • 页:JJZZ201906012
  • 页数:20
  • CN:06
  • ISSN:31-1339/TN
  • 分类号:138-157
摘要
石墨烯在太赫兹波段的优异性质,使其在太赫兹源、太赫兹探测和太赫兹调控三个方面都具备广阔的应用前景。主要对石墨烯在太赫兹波段的性质及石墨烯基太赫兹器件的相关研究进行了综述,并对石墨烯在太赫兹波段的应用前景进行了展望。在石墨烯太赫兹波段性质方面,主要介绍了石墨烯的电导模型、静态和超快光谱响应特性,以及表面太赫兹波辐射特性。在石墨烯基太赫兹器件方面,主要综述了基于光、电、磁调控的太赫兹主动器件,石墨烯基超材料的太赫兹调制器,基于阻抗匹配的减反射调控器件,以及可调太赫兹源器件的最新研究进展。
        Owing to its unique terahertz properties, graphene has potential applications in terahertz sources, terahertz detection, and terahertz control. In this paper, the terahertz properties of graphene and graphene-based terahertz devices are reviewed; further, the potential applications of graphene in the aforementioned fields are prospected. As for the terahertz properties of graphene, this paper mainly introduces the conductivity model, the characteristics of equilibrium and ultrafast spectral response, and the properties of surface terahertz wave emission. As for the graphene-based terahertz devices, this paper mainly reviews the recent developments in the research on the active terahertz devices based on optical, electrical, and magnetic control, the terahertz modulators with graphene-based metamaterial, the antireflection devices based on impedance matching, and the tunable terahertz sources.
引文
[1] Tonouchi M.Cutting-edge terahertz technology[J].Nature Photonics,2007,1(2):97-105.
    [2] Williams G P.Filling the THz gap:high power sources and applications[J].Reports on Progress in Physics,2006,69(2):301-326.
    [3] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [4] Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
    [5] Novoselov K S,Fal′ko V I,Colombo L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
    [6] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
    [7] Bonaccorso F,Sun Z,Hasan T,et al.Graphene photonics and optoelectronics[J].Nature Photonics,2010,4(9):611-622.
    [8] Geim A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
    [9] Docherty C J,Johnston M B.Terahertz properties of graphene[J].Journal of Infrared,Millimeter,and Terahertz Waves,2012,33(8):797-815.
    [10] Zhou Y X,Xu X L,Fan H M,et al.Graphene:manipulate terahertz waves[M]//Yusoff R B M.Graphene Optoelectronics.Weinheim,Germany:Wiley-VCH Verlag GmbH & Co.KGaA,2014:209-234.
    [11] Sensale-Rodriguez B,Yan R S,Kelly M M,et al.Broadband graphene terahertz modulators enabled by intraband transitions[J].Nature Communications,2012,3:780.
    [12] Buron J D,Petersen D H,B?ggild P,et al.Graphene conductance uniformity mapping[J].Nano Letters,2012,12(10):5074-5081.
    [13] Zhou Y X,Xu X L,Hu F R,et al.Graphene as broadband terahertz antireflection coating[J].Applied Physics Letters,2014,104(5):051106.
    [14] Zhou Y X,Xu X L,Fan H M,et al.Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene[J].Physical Chemistry Chemical Physics,2013,15(14):5084-5090.
    [15] Weis P,Garcia-Pomar J L,H?h M,et al.Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J].ACS Nano,2012,6(10):9118-9124.
    [16] Ju L,Geng B S,Horng J,et al.Graphene plasmonics for tunable terahertz metamaterials[J].Nature Nanotechnology,2011,6(10):630-634.
    [17] Li J Y,Zhou Y X,Quan B G,et al.Graphene-metamaterial hybridization for enhanced terahertz response[J].Carbon,2014,78:102-112.
    [18] Maysonnave J,Huppert S,Wang F,et al.Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses[J].Nano Letters,2014,14(10):5797-5802.
    [19] Yao Z H,Zhu L P,Huang Y Y,et al.Interface properties probed by active THz surface emission in graphene/SiO2/Si heterostructures[J].ACS Applied Materials & Interfaces,2018,10(41):35599-35606.
    [20] Gusynin P,Sharapov G,Carbotte P.Magneto-optical conductivity in graphene[J].Journal of Physics:Condensed Matter,2007,19(2):026222.
    [21] Falkovsky A.Optical properties of graphene[J].Journal of Physics:Conference Series,2008,129:012004.
    [22] Hanson G W.Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J].Journal of Applied Physics,2008,103(6):064302.
    [23] Horng J,Chen C F,Geng B S,et al.Drude conductivity of Dirac fermions in graphene[J].Physical Review B,2011,83(16):165113.
    [24] Maeng I,Lim S,Chae S J,et al.Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J].Nano Letters,2012,12(2):551-555.
    [25] Fu M X,Wang X K,Wang S,et al.Efficient terahertz modulator based on photoexcited graphene[J].Optical Materials,2017,66:381-385.
    [26] Zhou Y X,Xu X L,Fan H M,et al.Tunable magneto-optical Kerr effect in gated monolayer graphene in terahertz region[J].Journal of the Physical Society of Japan,2013,82(7):074717.
    [27] Qi M,Zhou Y X,Hu F R,et al.Improving terahertz sheet conductivity of graphene films synthesized by atmospheric pressure chemical vapor deposition with acetylene[J].The Journal of Physical Chemistry C,2014,118(27):15054-15060.
    [28] Zhou Y X,E Y W,Zhu L P,et al.Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence[J].Carbon,2016,96:1129-1137.
    [29] Sensale-Rodriguez B,Yan R S,Zhu M D,et al.Efficient terahertz electro-absorption modulation employing graphene plasmonic structures[J].Applied Physics Letters,2012,101(26):261115.
    [30] Tomaino J L,Jameson A D,Kevek J W,et al.Terahertz imaging and spectroscopy of large-area single-layer graphene[J].Optics Express,2011,19(1):141-146.
    [31] Li X,Cai W,An J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
    [32] Sukang B E,Kim H,Lee Y,et al.Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology,2010,5(8):574-578.
    [33] Paul M J,Tomaino J L,Kevek J W,et al.Terahertz imaging of inhomogeneous electrodynamics in single-layer graphene embedded in dielectrics[J].Applied Physics Letters,2012,101(9):091109.
    [34] Qi M,Ren Z Y,Jiao Y,et al.Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene[J].The Journal of Physical Chemistry C,2013,117(27):14348-14353.
    [35] Wang H,Zhou Y X,Qi M,et al.Direct growth of graphene on fused quartz by atmospheric pressure chemical vapor deposition with acetylene[J].The Journal of Physical Chemistry C,2019,123(4):2370-2377.
    [36] Kasry A,Kuroda M A,Martyna G J,et al.Chemical doping of large-area stacked graphene films for use as transparent,conducting electrodes[J].ACS Nano,2010,4(7):3839-3844.
    [37] Zhou Y X,Zheng X L,Xu X L,et al.Study on the terahertz conductivity of stacked multilayer graphene[J].China Sciencepaper,2014,9(6):673-676.周译玄,郑新亮,徐新龙,等.堆叠多层石墨烯的太赫兹电导研究[J].中国科技论文,2014,9(6):673-676.
    [38] Li J Y,Ren Z Y,Zhou Y X,et al.Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response[J].Carbon,2013,62:330-336.
    [39] Wang H B,Maiyalagan T,Wang X.Review on recent progress in nitrogen-doped graphene:synthesis,characterization,and its potential applications[J].ACS Catalysis,2012,2(5):781-794.
    [40] Zhou Y X,E Y W,Ren Z Y,et al.Solution-processable reduced graphene oxide films as broadband terahertz wave impedance matching layers[J].Journal of Materials Chemistry C,2015,3(11):2548-2556.
    [41] Wei Z,Wang D,Kim S,et al.Nanoscale tunable reduction of graphene oxide for graphene electronics[J].Science,2010,328(5984):1373-1376.
    [42] Jnawali G,Rao Y,Yan H G,et al.Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation[J].Nano Letters,2013,13(2):524-530.
    [43] Tielrooij K J,Song J C W,Jensen S A,et al.Photoexcitation cascade and multiple hot-carrier generation in graphene[J].Nature Physics,2013,9(4):248-252.
    [44] Frenzel A,Lui C,Shin Y,et al.Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene[J].Physical Review Letters,2014,113(5):056602.
    [45] Mihnev M T,Kadi F,Divin C J,et al.Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene[J].Nature Communications,2016,7:11617.
    [46] Brida D,Tomadin A,Manzoni C,et al.Ultrafast collinear scattering and carrier multiplication in graphene[J].Nature Communications,2013,4:1987.
    [47] Li T,Luo L,Hupalo M,et al.Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene[J].Physical Review Letters,2012,108(16):167401.
    [48] Pl?tzing T,Winzer T,Malic E,et al.Experimental verification of carrier multiplication in graphene[J].Nano Letters,2014,14(9):5371-5375.
    [49] Kar S,Mohapatra D R,Freysz E,et al.Tuning photoinduced terahertz conductivity in monolayer graphene:optical-pump terahertz-probe spectroscopy[J].Physical Review B,2014,90(16):165420.
    [50] Docherty C J,Lin C T,Joyce H J,et al.Extreme sensitivity of graphene photoconductivity to environmental gases[J].Nature Communications,2012,3:1228.
    [51] Hafez H A,Al-Naib I,Dignam M M,et al.Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene[J].Physical Review B,2015,91(3):035422.
    [52] Mics Z,Tielrooij K J,Parvez K,et al.Thermodynamic picture of ultrafast charge transport in graphene[J].Nature Communications,2015,6:7655.
    [53] Mittendorff M,Winzer T,Malic E,et al.Anisotropy of excitation and relaxation of photogenerated charge carriers in graphene[J].Nano Letters,2014,14(3):1504-1507.
    [54] Breusing M,Kuehn S,Winzer T,et al.Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J].Physical Review B,2011,83(15):153410.
    [55] Graham M W,Shi S F,Wang Z H,et al.Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene[J].Nano Letters,2013,13(11):5497-5502.
    [56] Song J C W,Reizer M Y,Levitov L S.Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J].Physical Review Letters,2012,109(10):106602.
    [57] Tomadin A,Hornett S M,Wang H I,et al.The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies[J].Science Advances,2018,4(5):eaar5313.
    [58] Zhang Y P,Zhang X,Liu L Y,et al.Theoretical research of terahertz negative dynamic conductivity in optically pumped graphene[J].Chinese Journal of Lasers,2012,39(1):0111002.张玉萍,张晓,刘陵玉,等.光抽运石墨烯太赫兹负动态电导率的理论研究[J].中国激光,2012,39(1):0111002.
    [59] Kar S,Nguyen V L,Mohapatra D R,et al.Ultrafast spectral photoresponse of bilayer graphene:optical pump-therahertz probe spectroscopy[J].ACS Nano,2018,12(2):1785-1792.
    [60] Winnerl S,Orlita M,Plochocka P,et al.Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J].Physical Review Letters,2011,107(23):237401.
    [61] Ryzhii V,Ryzhii M,Satou A,et al.Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures[J].Journal of Applied Physics,2009,106(8):084507.
    [62] Boubanga-Tombet S,Chan S,Watanabe T,et al.Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature[J].Physical Review B,2012,85(3):035443.
    [63] Ryzhii V,Dubinov A A,Otsuji T,et al.Double-graphene-layer terahertz laser:concept,characteristics,and comparison[J].Optics Express,2013,21(25):31567-31577.
    [64] Obraztsov P A,Kanda N,Konishi K,et al.Photon-drag-induced terahertz emission from graphene[J].Physical Review B,2014,90(24):241416.
    [65] Zhu L,Huang Y,Yao Z,et al.Enhanced polarization-sensitive terahertz emission from vertically grown graphene by a dynamical photon drag effect[J].Nanoscale,2017,9(29):10301-10311.
    [66] Wang H,Zhou Y X,Yao Z H,et al.Terahertz generation from reduced graphene oxide[J].Carbon,2018,134:439-447.
    [67] Chen X Y,Tian Z.Recent progress in terahertz dynamic modulation based on graphene[J].Chinese Optics,2017,10(1):86-97.陈勰宇,田震.石墨烯太赫兹波动态调制的研究进展[J].中国光学,2017,10(1):86-97.
    [68] Sensale-Rodriguez B,Yan R S,Rafique S,et al.Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J].Nano Letters,2012,12(9):4518-4522.
    [69] Sensale-Rodriguez B,Rafique S,Yan R S,et al.Terahertz imaging employing graphene modulator arrays[J].Optics Express,2013,21(2):2324-2330.
    [70] Mao Q,Wen Q Y,Tian W,et al.High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors[J].Optics Letters,2014,39(19):5649-5652.
    [71] Wu Y,La-O-vorakiat C,Qiu X P,et al.Graphene terahertz modulators by ionic liquid gating[J].Advanced Materials,2015,27(11):1874-1879.
    [72] Kakenov N,Takan T,Ozkan V A,et al.Graphene-enabled electrically controlled terahertz spatial light modulators[J].Optics Letters,2015,40(9):1984-1987.
    [73] Shi F H,Chen Y H,Han P,et al.Broadband,spectrally flat,graphene-based terahertz modulators[J].Small,2015,11(45):6044-6050.
    [74] Wen Q Y,Tian W,Mao Q,et al.Graphene based all-optical spatial terahertz modulator[J].Scientific Reports,2014,4:7409.
    [75] Du W Y,Zhou Y X,Yao Z H,et al.Active broadband terahertz wave impedance matching based on optically doped graphene-silicon heterojunction[J].Nanotechnology,2019,30(19):195705.
    [76] Qi M,Zhou Y X,Huang Y Y,et al.Interface-induced terahertz persistent photoconductance in rGO-gelatin flexible films[J].Nanoscale,2017,9(2):637-646.
    [77] Li Q,Tian Z,Zhang X Q,et al.Active graphene-silicon hybrid diode for terahertz waves[J].Nature Communications,2015,6:7082.
    [78] Crassee I,Levallois J,Walter A L,et al.Giant Faraday rotation in single- and multilayer graphene[J].Nature Physics,2011,7(1):48-51.
    [79] Crassee I,Orlita M,Potemski M,et al.Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene[J].Nano Letters,2012,12(5):2470-2474.
    [80] Poumirol J M,Liu P Q,Slipchenko T M,et al.Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene[J].Nature Communications,2017,8:14626.
    [81] Pan X C,Yao Z H,Xu X L,et al.Fabrication,design and application of THz metamaterials[J].Chinese Optics,2013,6(3):283-296.潘学聪,姚泽瀚,徐新龙,等.太赫兹波段超材料的制作、设计及应用[J].中国光学,2013,6(3):283-296.
    [82] Yan R S,Sensale-Rodriguez B,Liu L,et al.A new class of electrically tunable metamaterial terahertz modulators[J].Optics Express,2012,20(27):28664-28671.
    [83] Lee S H,Choi M,Kim T T,et al.Switching terahertz waves with gate-controlled active graphene metamaterials[J].Nature Materials,2012,11(11):936-941.
    [84] Lee S H,Choi J,Kim H D,et al.Ultrafast refractive index control of a terahertz graphene metamaterial[J].Scientific Reports,2013,3:2135.
    [85] Valmorra F,Scalari G,Maissen C,et al.Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J].Nano Letters,2013,13(7):3193-3198.
    [86] Gao W L,Shu J,Reichel K,et al.High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J].Nano Letters,2014,14(3):1242-1248.
    [87] Degl′Innocenti R,Jessop D S,Shah Y D,et al.Low-bias terahertz amplitude modulator based on split-ring resonators and graphene[J].ACS Nano,2014,8(3):2548-2554.
    [88] Shi S F,Zeng B,Han H L,et al.Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures[J].Nano Letters,2015,15(1):372-377.
    [89] Liang G Z,Hu X N,Yu X C,et al.Integrated terahertz graphene modulator with 100% modulation depth[J].ACS Photonics,2015,2(11):1559-1566.
    [90] Park H R,Namgung S,Chen X S,et al.Perfect extinction of terahertz waves in monolayer graphene over 2-nm-wide metallic apertures[J].Advanced Optical Materials,2015,3(5):667-673.
    [91] Miao Z Q,Wu Q,Li X,et al.Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J].Physical Review X,2015,5(4):041027.
    [92] Xiao S Y,Wang T,Liu T T,et al.Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J].Carbon,2018,126:271-278.
    [93] Kindness S J,Almond N W,Wei B B,et al.Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning[J].Advanced Optical Materials,2018,6(21):1800570.
    [94] Yan H G,Li X S,Chandra B,et al.Tunable infrared plasmonic devices using graphene/insulator stacks[J].Nature Nanotechnology,2012,7(5):330-334.
    [95] Shen N H,Tassin P,Koschny T,et al.Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator[J].Physical Review B,2014,90(11):115437.
    [96] Su Z X,Yin J B,Zhao X P.Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J].Optics Express,2015,23(2):1679-1690.
    [97] Fan Y C,Shen N H,Koschny T,et al.Tunable terahertz meta-surface with graphene cut-wires[J].ACS Photonics,2015,2(1):151-156.
    [98] Cao J G,Zhou Y X.Polarization modulation of terahertz wave by graphene metamaterial with grating structure[J].Laser & Optoelectronics Progress,2018,55(9):092501.曹建国,周译玄.栅状结构石墨烯超材料的太赫兹波偏振调制[J].激光与光电子学进展,2018,55(9):092501.
    [99] Tassin P,Koschny T,Kafesaki M,et al.A comparison of graphene,superconductors and metals as conductors for metamaterials and plasmonics[J].Nature Photonics,2012,6(4):259-264.
    [100] Liu P Q,Luxmoore I J,Mikhailov S A,et al.Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J].Nature Communications,2015,6:8969.
    [101] Huang Y Y,Yao Z H,Hu F R,et al.Manipulating magnetoinductive coupling with graphene-based plasmonic metamaterials in THz region[J].Plasmonics,2016,11(4):963-970.
    [102] Yao Z H,Huang Y Y,Wang Q,et al.Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region[J].Computational Materials Science,2016,117:544-548.
    [103] Huang Y Y,Yao Z H,Hu F R,et al.Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J].Carbon,2017,119:305-313.
    [104] Xu X L,Huang Y Y,Yao Z H,et al.The design,electromagnetic properties and applications of chiral metamaterials[J].Journal of Northwest University(Natural Science Edition),2016,46(1):1-12.徐新龙,黄媛媛,姚泽瀚,等.手性超材料的设计、电磁特性及应用[J].西北大学学报(自然科学版),2016,46(1):1-12.
    [105] Thoman A,Kern A,Helm H,et al.Nanostructured gold films as broadband terahertz antireflection coatings[J].Physical Review B,2008,77(19):195405.
    [106] Pham P H Q,Zhang W D,Quach N V,et al.Broadband impedance match to two-dimensional materials in the terahertz domain[J].Nature Communications,2017,8:2233.
    [107] Otsuji T,Tombet S B,Satou A,et al.Terahertz-wave generation using graphene:toward new types of terahertz lasers[J].IEEE Journal of Selected Topics in Quantum Electronics,2013,19(1):8400209.
    [108] Karasawa H,Komori T,Watanabe T,et al.Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials[J].Journal of Infrared,Millimeter,and Terahertz Waves,2011,32(5):655-665.
    [109] Ryzhii V,Ryzhii M,Mitin V,et al.Toward the creation of terahertz graphene injection laser[J].Journal of Applied Physics,2011,110(9):094503.
    [110] Ryzhii V,Dubinov A A,Otsuji T,et al.Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides[J].Journal of Applied Physics,2010,107(5):054505.
    [111] Ryzhii V,Dubinov A A,Aleshkin V Y,et al.Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure[J].Applied Physics Letters,2013,103(16):163507.
    [112] Popov V V,Polischuk O V,Davoyan A R,et al.Plasmonic terahertz lasing in an array of graphene nanocavities[J].Physical Review B,2012,86(19):195437.
    [113] Watanabe T,Fukushima T,Yabe Y,et al.The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene[J].New Journal of Physics,2013,15(7):075003.
    [114] Bahk Y M,Ramakrishnan G,Choi J,et al.Plasmon enhanced terahertz emission from single layer graphene[J].ACS Nano,2014,8(9):9089-9096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700