用户名: 密码: 验证码:
新型Fe_3O_4@MoO_3@GdF_3:Eu~(3+)磁-光双模态成像材料的合成及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and properties of a novel Fe_3O_4@MoO_3@GdF_3:Eu~(3+) magnetic-luminescent bi-model imaging materials
  • 作者:龙爱春 ; 彭红霞 ; 胡继林 ; 贺爱兰 ; 陈占军 ; 彭秧锡
  • 英文作者:Aichun Long;Hongxia Peng;Jilin Hu;Ailan He;Zhanjun Chen;Yangxi Peng;Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials;School of Materials and Environmental Engineering, Hunan University of Humanities Science and Technology;School of Materials Science and Engineering, Central South University;
  • 关键词:LSPR效应 ; Fe3O4@MoO3@GdF3 ; Eu3+ ; 磁性 ; 发光 ; 毒性
  • 英文关键词:LSPR;;Fe3O4@MoO3@GdF3:Eu3+;;magnetic;;luminescent;;cytotoxicity
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:精细陶瓷与粉体材料湖南省重点实验室;湖南人文科技学院材料与环境工程学院;中南大学材料科学与工程学院;
  • 出版日期:2019-07-30
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家自然科学基金(51704116);; 中国博士后科学基金(2017M612582);; 湖南省自然科学基金(2018JJ3252);; 湖南省科技计划(2016TP1028);; 湖南省双一流学科建设项目;; 湖南省教育厅科学研究项目(16B136)资助
  • 语种:中文;
  • 页:KXTB201921010
  • 页数:9
  • CN:21
  • ISSN:11-1784/N
  • 分类号:89-97
摘要
针对现有磁-光双模态成像材料灵敏度低与穿透深度不足的缺陷,通过引入局域表面等离子体共振(LSPR)效应的隔层的方法,成功制备了新型Fe_3O_4@MoO_3@GdF_3:Eu~(3+)磁-光双模态成像材料. XRD分析结果表明, Fe_3O_4表面逐层包覆上了结晶良好的单斜晶系的MoO_3和正交晶系的GdF3:Eu3+纳米晶.荧光光谱分析表明,该材料具有良好的发光性,以593 nm附近的5D0→7F1磁偶极跃迁为最强发射峰.而该材料的磁饱和强度仍为25.9 emu/g. MTT和MRI分析结果表明, Fe_3O_4@MoO_3@GdF_3:Eu~(3+)磁-光双模态成像材料具有低毒性和较好的核磁共振成像效果.该方法将解决磁-光双模态成像材料性能方面的瓶颈问题,为推进该类材料在肿瘤精准诊疗和光学共聚焦显微技术中的应用提供理论依据和实验基础.
        The probe plays a key role in the process of the tumor diagnosis and image guided accuracy surgery, but its single-function,weaker luminescent intensity and high cost limitits application. Therefore, development of new type high-performance and multi-functional imaging materials has become an important research topic in the field of chemistry, materials science, life science and medicine. In recent years, researchers have found that magnetic-luminescent bi-functional nanoparticles can provide high-resolution, high-contrast images for precision medicine and are crucial for imaging applications. Among them, the design and synthesis of Fe_3O_4@REL(rare earth luminescence) magnetic-luminescent bi-functional nanoparticles have become the focus of current research.In this work, we demonstrated the nonmetallic plasmon induced enhancement of luminescence in a core-shell structured material, consisting of Fe_3O_4 as the core, GdF3: Eu3+as the luminescence layer and MoO3 as the plasmonic layer. The novel Fe_3O_4@MoO_3@GdF_3:Eu~(3+)nanoparticles of MoO3 intermediate with local surface plasmon resonance(LSPR) effect were synthesized by solvothermal and precipitation method. And their structures, compositions and properties were analyzed.Enhancement mechanism of luminescence property and the interaction factors between the oxide layer and luminescence shell had been illuminated. The results of X-ray diffraction(XRD) analysis showed that the nanoparticles are composed of Fe33 O4, single monoclinic MoO3 and orthorhombic GdF3:Eu+. Transmission electron microscope(TEM) images showed that the obvious nanoparticles and MoO3 and GdF3:Eu3+are deposited on the surface of Fe3 O4 layer by layer. It showed that the shielding effect of homogeneous coating MoO3 spacer and the MoO3 with LSPR plays a role in enhancing the luminescence properties of the shell GdF3:Eu3+. The emission spectra showed that the strongest emission(593 nm) is due to the5 D0→7 F1 forced electric dipole transition, and the other emission bands are observed at 556, 616 and 692 nm for5 D0→7 Fn,5 D0→7 F2 and5 D0→7 F4, respectively. The magnetic measurement results showed that the Fe_3O_4@MoO_3@GdF_3:Eu~(3+)nanoparticles possess excellent magnetic responsivity(25.9 emu/g) and redispersibility. MTT assays showed that the nanoparticles almost have no cytotoxicity or side effects in living cells. The magnetic resonance imaging of the sample gradually enhanced with the increase of the concentration, indicating that the effect of magnetic resonance imaging was corresponding to the concentration. The T2 magnetic resonance imaging relaxation rate of the material was0.9813 mg-1 m-1 s-1.In summary, the core-shell structured Fe_3O_4@MoO_3@GdF_3:Eu~(3+)nanoparticles have been prepared by a facile method.The nanoparticles have high emission intensity and magnetisation saturation value. Compared with Fe3 O4@GdF3:Eu3+,luminescence intensity of Fe_3O_4@MoO_3@GdF_3:Eu~(3+)nanoparticles increased significantly. Therefore, the as-prepared core-shell structured bifunctional nanoparticles are feasibly applicable to simultaneous cell imaging and target drug delivery. This work can solve the property problem of the magnetic-luminescent bimodal imaging material and promote this kind of composite material applications in imaging and therapy of tumor, and optical confocal microscopy technology.
引文
1 Fu G,Sanjay S T,Dou M,et al.Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer.Nanoscale,2016,8:5422-5427
    2 Jin L,Liu F T,Li W,et al.Preparation and characterization of CdTe@SiO2@GdF3fluorescence/magnetic resonance imaging dual functional microsphere(in Chinese).J Jilin Univ(Sci Ed),2018,56:1549-1555[金丽,刘芳同,李伟,等.CdTe@SiO2@GdF3荧光/磁共振成像双功能微球的制备和表征.吉林大学学报(理学版),2018,56:1549-1555]
    3 Cheng L,Wang C,Ma X,et al.Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control.Adv Funct Mater,2013,23:272-280
    4 Kostiv U,Patsula V,?louf M,et al.Physico-chemical characteristics,biocompatibility,and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2core-shell nanoparticles.RSC Adv,2017,7:8786-8797
    5 Sun X,Pan X T,Xu B L,et al.Progress in multimodal imaging-guided photothermal anti-tumor combined therapy(in Chinese).Chin Sci Bull,2018,63:3570-3584[孙晓,潘雪婷,徐柏龙,等.多模态成像引导的光热抗肿瘤联合疗法研究进展.科学通报,2018,63:3570-3584]
    6 Sun J F,Zhang Y,Yang F,et al.Research and development of medical magnetic nanomaterials(in Chinese).Chin Sci Bull,2019,64:842-853[孙剑飞,张宇,杨芳,等.医药磁性氧化铁纳米材料的研究和发展.科学通报,2019,64:842-853]
    7 Liu H,Han J,McBean C,et al.Synthesis-driven,structure-dependent optical behavior in phase-tunable NaYF4:Yb,Er-based motifs and associated heterostructures.Phys Chem Chem Phys,2017,19:2153-2167
    8 Suo H,Hu F,Zhao X,et al.All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+operating in the first biological window.JMater Chem C,2017,5:1501-1507
    9 Hu G,Li N,Tang J,et al.A general and facile strategy to fabricate multifunctional nanoprobes for simultaneous19F magnetic resonance imaging,optical/thermal imaging,and photothermal therapy.ACS Appl Mater Interfaces,2016,8:22830-22838
    10 Cui X,Mathe D,Kovács N.Synthesis,characterization,and application of core-shell Co0.16Fe2.84O4@NaYF4(Yb,Er)and Fe3O4@NaYF4(Yb,Tm)nanoparticle as trimodal(MRI,PET/SPECT,and optical)imaging agents.Bioconjugate Chem,2015,27:319-324
    11 Wu T,Pan H,Chen R,et al.Enhanced photoluminescence of Fe3O4@Y2O3:Eu3+bifunctional nanoparticles by the Gd3+co-doping.J Alloys Compd,2016,666:507-512
    12 Qin Z,Du S,Luo Y,et al.Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water.Appl Surf Sci,2016,378:174-180
    13 Vu H H T,Atabaev T S,Nguyen N D,et al.Luminescent core-shell Fe3O4@Gd2O3:Er3+,Li+composite particles with enhanced optical properties.JSol-Gel Sci Technol,2014,71:391-395
    14 Peng H,Cui B,Li G,et al.A multifunctionalβ-CD-modified Fe3O4@ZnO:Er3+,Yb3+nanocarrier for antitumor drug delivery and microwavetriggered drug release.Mater Sci Eng-C,2015,46:253-263
    15 Jing P,Wang Q,Liu B,et al.Controlled fabrication of bi-functional Fe3O4@SiO2@Gd2O3:Yb,Er nanoparticles and their magnetic,up-conversion luminescent properties.RSC Adv,2014,4:44575-44582
    16 Peng H X,Shen M F,Chen Z J,et al.Preparation and properties of Fe3O4@ZnO@YVO4:Eu3+multifunctional composite nanoparticles with magnetic-luminescent-microwave absorption(in Chinese).Sci Sin-Chim,2018,48:504-511[彭红霞,沈梦凡,陈占军,等.Fe3O4@ZnO@YVO4:Eu3+磁-光-吸波多功能复合纳米颗粒的制备及其性能研究.中国科学:化学,2018,48:504-511]
    17 Ma Q,Yu W,Dong X,et al.Janus nanobelts:Fabrication,structure and enhanced magnetic-fluorescent bifunctional performance.Nanoscale,2014,6:2945-2952
    18 Chen X,Zhou D,Xu W,et al.Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb,Er core-shell hybrid and its tunable upconversion enhancement.Sci Rep,2017,7:41079-41084
    19 Wang Z,Wang C,Han Q,et al.Metal-enhanced upconversion luminescence of NaYF4:Yb/Er with Ag nanoparticles.Mater Res Bull,2017,88:182-187
    20 Hamanaka Y,Hirose T,Yamada K,et al.Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu2-xSnanoparticles.Opt Mater Express,2016,6:3838-3842
    21 Balitskii O A,Moszyński D,Abbas Z.Aqueous processable WO3-xnanocrystals with solution tunable localized surface plasmon resonance.RSCAdv,2016,6:59050-59054
    22 Su H,Zhang H,Tang X,et al.Effects of MoO3and WO3additives on densification and magnetic properties of highly permeable NiCuZn ferrites.Mater Chem Phys,2007,102:271-274
    23 Tan X,Wang L,Cheng C,et al.Plasmonic MoO3-x@MoO3nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement.Chem Commun,2016,52:2893-2896
    24 Huang Q,Hu S,Zhuang J,et al.MoO3-x-based hybrids with tunable localized surface plasmon resonances:Chemical oxidation driving transformation from ultrathin nanosheets to nanotubes.Chem Eur J,2012,18:15283-15287
    25 Zhang Z,Yang L,Fang Y R,et al.Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2evolution from ammonia borane.Adv Sci,2018,5:1800748
    26 Peng H X,Liu G X,Dong X T.Fe3O4@GdF3:Er3+,Yb3+nanoparticles:Synthesis and bifunctional properties.J Optoelectron Adv Mater,2012,143-144:205-209
    27 Peng H X,Liu G X,Fan S G,et al.Preparation and characterization of Fe3O4@Gd2O3:Eu3+bi-functional magnetic and luminescent composite particles(in Chinese).Acta Chim Sin,2011 699:1081-1086[彭红霞,刘桂霞,范水高,等.Fe3O4@Gd2O3:Eu3+光双功能复合粒子的制备与表征.化学学报,2011,699:1081-1086]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700