用户名: 密码: 验证码:
An air-stable and waterproof lithium metal anode enabled by wax composite packaging
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An air-stable and waterproof lithium metal anode enabled by wax composite packaging
  • 作者:Yunbo ; Zhang ; Wei ; Lv ; Zhijia ; Huang ; Guangmin ; Zhou ; Yaqian ; Deng ; Jun ; Zhang ; Chen ; Zhang ; Boyu ; Hao ; Qi ; Qi ; Yan-Bing ; He ; Feiyu ; Kang ; Quan-Hong ; Yang
  • 英文作者:Yunbo Zhang;Wei Lv;Zhijia Huang;Guangmin Zhou;Yaqian Deng;Jun Zhang;Chen Zhang;Boyu Hao;Qi Qi;Yan-Bing He;Feiyu Kang;Quan-Hong Yang;Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University;Shenzhen Geim Graphene Center, Graduate School at Shenzhen, Tsinghua University;Department of Materials Science and Engineering, Stanford University;Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University;
  • 英文关键词:Lithium metal anode;;Air-stable;;Waterproof;;Dendrite;;Lithium sulfur battery
  • 中文刊名:JXTW
  • 英文刊名:科学通报(英文版)
  • 机构:Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University;Shenzhen Geim Graphene Center, Graduate School at Shenzhen, Tsinghua University;Department of Materials Science and Engineering, Stanford University;Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University;
  • 出版日期:2019-07-15
  • 出版单位:Science Bulletin
  • 年:2019
  • 期:v.64
  • 基金:supported by the National Science Fund for Distinguished Young Scholars, China (51525204);; National Natural Science Foundation of China (51772164 and U1601206);; Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006);; Guangdong Special Support Program (2017TQ04C664);; the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111);; the Shenzhen Basic Research Project (JCYJ20170412171630020 and JCYJ20170412171359175)
  • 语种:英文;
  • 页:JXTW201913009
  • 页数:8
  • CN:13
  • ISSN:10-1298/N
  • 分类号:42-49
摘要
The reviving use of lithium metal anode(LMA)is one of the most promising ways to upgrade the energy density of lithium ion batteries.In the roadmap towards the real use,besides the formation of the dendrite,various adverse reactions due to the high activity of LMA when exposed to air or the electrolyte limit its practical applications.Learning from the packaging technology in electronic industry,we propose a wax-based coating compositing with the ion conducting poly(ethylene oxide)by a simple dip-coating technology and the prepared LMA is featured with an air-stable and waterproof surface.The LMA thus remains stable for 24 h in ambient air even with the relative humidity of 70% while retaining about85% its electrochemical capacity.More importantly,the LMA is accessible to water and when dipping in water,no obvious adverse reactions or capacity decay is observed.With the composite coating,a steady cycling performance for 500 h in symmetrical cells and a low capacity decay rate of 0.075% per cycle after 300 cycles in lithium-sulfur batteries assembled with the packaged anode have been achieved.This work demonstrates a very simple and effective LMA package technology which is easily scalable and is very promising for speeding up the industrialization of lithium-sulfur batteries and shows potentials for the large-scale production of air-sensitive electrode materials not limited to LMAs.
        The reviving use of lithium metal anode(LMA)is one of the most promising ways to upgrade the energy density of lithium ion batteries.In the roadmap towards the real use,besides the formation of the dendrite,various adverse reactions due to the high activity of LMA when exposed to air or the electrolyte limit its practical applications.Learning from the packaging technology in electronic industry,we propose a wax-based coating compositing with the ion conducting poly(ethylene oxide)by a simple dip-coating technology and the prepared LMA is featured with an air-stable and waterproof surface.The LMA thus remains stable for 24 h in ambient air even with the relative humidity of 70% while retaining about85% its electrochemical capacity.More importantly,the LMA is accessible to water and when dipping in water,no obvious adverse reactions or capacity decay is observed.With the composite coating,a steady cycling performance for 500 h in symmetrical cells and a low capacity decay rate of 0.075% per cycle after 300 cycles in lithium-sulfur batteries assembled with the packaged anode have been achieved.This work demonstrates a very simple and effective LMA package technology which is easily scalable and is very promising for speeding up the industrialization of lithium-sulfur batteries and shows potentials for the large-scale production of air-sensitive electrode materials not limited to LMAs.
引文
[1]Armand M,Tarascon JM.Building better batteries.Nature 2008;451:652-7.
    [2]Xu W,Wang J,Ding F,et al.Lithium metal anodes for rechargeable batteries.Energy Environ Sci 2014;7:513-37.
    [3]Lin D,Liu Y,Liang Z,et al.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nanotechnol2016;11:626-32.
    [4]Yang C-P,Yin Y-X,Zhang S-F,et al.Accommodating lithium into 3d current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun 2015;6:8058.
    [5]Yun Q,He Y-B,Lv W,et al.Chemical dealloying derived 3d porous current collector for li metal anodes.Adv Mater 2016;28:6932-9.
    [6]Kozen AC,Lin C-F,Pearse AJ,et al.Next-generation lithium metal anode engineering via atomic layer deposition.ACS Nano 2015;9:5884-92.
    [7]Yan K,Lee H-W,Gao T,et al.Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.Nano Lett2014;14:6016-22.
    [8]Ma G,Wen Z,Wu M,et al.A lithium anode protection guided highly-stable lithium-sulfur battery.Chem Commun 2014;50:14209-12.
    [9]Liu K,Pei A,Lee HR,et al.Lithium metal anodes with an adaptive‘‘solid-liquid”interfacial protective layer.J Am Chem Soc 2017;139:4815-20.
    [10]Bucur CB,Lita A,Osada N,et al.A soft,multilayered lithium-electrolyte interface.Energy Environ Sci 2016;9:112-6.
    [11]Xu R,Xiao Y,Zhang R,et al.Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries.Adv Mater 2019;31:1808392.
    [12]Xu R,Zhang X-Q,Cheng X-B,et al.Artificial soft-rigid protective layer for dendrite-free lithium metal anode.Adv Funct Mater 2018;28:1705838.
    [13]Lu Q,He Y-B,Yu Q,et al.Dendrite-free,high-rate,long-life lithium metal batteries with a 3d cross-linked network polymer electrolyte.Adv Mater2017;29:160440.
    [14]Li W,Yao H,Yan K,et al.The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.Nat Commun2015;6:7436.
    [15]Ding F,Xu W,Graff GL,et al.Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.J Am Chem Soc 2013;135:4450-6.
    [16]Lu Y,Tu Z,Archer LA.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nat Mater 2014;13:961-9.
    [17]Qian J,Henderson WA,Xu W,et al.High rate and stable cycling of lithium metal anode.Nat Commun 2015;6:6362.
    [18]Zhang J,Wang D-W,Lv W,et al.Ethers illume sodium-based battery chemistry:Uniqueness,surprise,and challenges.Adv Energy Mater2018;8:1801361.
    [19]Zhao J,Zhou G,Yan K,et al.Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes.Nat Nanotechnol2017;12:993-9.
    [20]Li Y,Sun Y,Pei A,et al.Robust pinhole-free Li3N solid electrolyte grown from molten lithium.ACS Cent Sci 2018;4:97-104.
    [21]Wang Z,Fu Y,Zhang Z,et al.Application of stabilized lithium metal powder(slmp(r))in graphite anode-a high efficient prelithiation method for lithiumion batteries.J Power Sources 2014;260:57-61.
    [22]Wang D,Zhang W,Zheng W,et al.Towards high-safe lithium metal anodes:suppressing lithium dendrites via tuning surface energy.Adv Sci2016;4:1600168.
    [23]Cheng X-B,Zhang R,Zhao C-Z,et al.A review of solid electrolyte interphases on lithium metal anode.Adv Sci 2016;3:1500213.
    [24]Lascaud S,Perrier M,Vallee A,et al.Phase-diagrams and conductivity behavior of poly(ethylene oxide)molten-salt rubbery electrolytes.Macromolecules1994;27:7469-77.
    [25]Assegie AA,Cheng J-H,Kuo L-M,et al.Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.Nanoscale 2018;10:6125-38.
    [26]Liang Z,Zheng G,Liu C,et al.Polymer nanofiber-guided uniform lithium deposition for battery electrodes.Nano Lett 2015;15:2910-6.
    [27]Lv W,Tang D-M,He Y-B,et al.Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage.ACS Nano2009;3:3730-6.
    [28]Li Y,Xu B,Xu H,et al.Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries.Angew Chem Int Ed2017;56:753-6.
    [29]Lv D,Shao Y,Lozano T,et al.Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes.Adv Energy Mater 2014;5:1400993.
    [30]Cheng X-B,Hou T-Z,Zhang R,et al.Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries.Adv Mater 2016;28:2888-95.
    [31]Kim H,Jeong G,Kim Y-U,et al.Metallic anodes for next generation secondary batteries.Chem Soc Rev 2013;42:9011-34.
    [32]Rosenman A,Markevich E,Salitra G,et al.Review on li-sulfur battery systems:an integral perspective.Adv Energy Mater 2015;5:1500212.
    [33]Ji X,Lee KT,Nazar LF.A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries.Nat Mater 2009;8:500-6.
    [34]Zhou G,Li F,Cheng H-M.Progress in flexible lithium batteries and future prospects.Energy Environ Sci 2014;7:1307-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700