用户名: 密码: 验证码:
冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources of ore-forming materials of Luerma porphyry copper(gold) deposit,western Gangdise
  • 作者:刘洪 ; 李光明 ; 黄瀚霄 ; 张林奎 ; 吕梦鸿 ; 兰双双 ; 付建刚 ; 周维德 ; 解惠
  • 英文作者:LIU Hong;LI GuangMing;HUANG HanXiao;ZHANG LinKui;Lü MengHong;LAN ShuangShuang;FU JianGang;ZHOU WeiDe;XIE Hui;Chengdu Center,China Geological Survey;Sichuan Institute of Metallurgical Geology & Exploration;
  • 关键词:地球化学 ; 物质来源 ; 原位微区稳定同位素 ; 鲁尔玛 ; 斑岩型矿床 ; 冈底斯
  • 英文关键词:geochemistry;;source of ore-forming materials;;in-situ microanalysis stable isotopes;;Luerma;;porphyry deposit;;Gangdise
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:中国地质调查局成都地质调查中心;四川省冶金地质勘查院;
  • 出版日期:2019-06-15
  • 出版单位:矿床地质
  • 年:2019
  • 期:v.38
  • 基金:国家重点研发计划(编号:SQ2018YFC060162c、2016YFC0600308);; 中国地质调查项目(编号:DD20160015、DD20190542、DD20190147);; 中国科学院战略性先导科技专项(编号:XDA20070304);; 西南地质科技创新中心青藏高原国际大学科计划联合资助的成果
  • 语种:中文;
  • 页:KCDZ201903012
  • 页数:13
  • CN:03
  • ISSN:11-1965/P
  • 分类号:176-188
摘要
西藏措勤县鲁尔玛铜(金)矿床为冈底斯成矿带西段新发现的斑岩型矿床,位于中拉萨微陆块的西部,矿体主要呈脉状和不规则状产于含矿斑岩顶部和接触带,矿床形成于晚三叠世(213 Ma)。文章通过研究主成矿阶段硫化物的S-Pb同位素组成特征,并与晚三叠世含矿斑岩体Pb同位素组成进行对比,发现共生硫化物δ34SV-CDT值变化范围较窄(δ34SV-CDT=-2.38‰~1.75‰,极差为4.13‰,均值为-0.64‰),具有深源硫(地幔或下地壳)的特征;共生硫化物(黄铁矿、黄铜矿和毒砂等)Pb同位素(n(206Pb)/n(204Pb)、n(207Pb)/n(204Pb)、n(208Pb)/n(204Pb)分别为18.450~18.903、15.602~15.669、38.637~39.424)和晚三叠世含矿斑岩的Pb同位素(n(206Pb)/n(204Pb)、n(207Pb)/n(204Pb)、n(208Pb)/n(204Pb)分别为18.845~19.560、15.634~15.689、39.273~40.211)具有一致的线性演化曲线,显示出壳幔混合的特征,暗示鲁尔玛铜(金)矿的铅来自于晚三叠世的岩浆活动。研究认为,鲁尔玛铜(金)矿床形成于晚三叠世新特提斯洋壳向北俯冲的环境,成矿物质应源于新生地壳熔融形成的中酸性岩浆。
        The Late Triassic Luerma copper(gold) deposit formed at ca. 213 Ma is located in Coqen County of southern Lhasa microterrane. The orebodies are hosted in the Late Triassic intermediate-acid intrusive rocks. In this study, the authors investigated the S and Pb isotopes from pyrite, chalcopyrite, arsenopyrite and ore-bearing porphyry to understand the genesis of the Luerma deposit. The δ34 Sv-CDTvalues in sulfide minerals range from-2.38‰ to 1.75‰ with a mean value of-0.64‰, which displays a deep sulfur source. Sulfide minerals in the Luerma deposit yielded the Pb isotope values of n(206 Pb)/n(204 Pb) ranging from 18.450 to 19.903, n(207 Pb)/n(204 Pb)ranging from 15.602 to 15.669, and n(208 Pb)/n(204 Pb) ranging from 38.637 to 39.424, consistent with values of of porphyry whose n(206 Pb)/n(204 Pb) ratios range from 18.845 to 18.560, n(207 Pb)/n(204 Pb) ratios range from 15.634 to15.689, and n(208 Pb)/n(204 Pb) ratios range from 39.273 to 40.211. These Pb isotopes form a linear evolution curve,suggesting that fluids might have been derived from the Late Triassic magmatism. It is thus held that the oreforming materials in the Luerma deposit were mainly derived from the Late Triassic magmatism, which was likely related to the northward subduction of Paleo-Tethys oceanic crust.
引文
Bao Z A,Chen L,Zong C L,Yuan H L,Chen K Y and Dai M L.2017.Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J].International Journal of Mass Spectrometry,(421):255-262.
    Beaudry P,LongpréM A,Economos R,Wing B A,Bui T H and Stix J.2018.Degassing-induced fractionation of multiple sulphur isotopes unveils post-Archaean recycled oceanic crust signal in hotspot lava[J].Nature communications,9(5093):1-12.
    Bissig T and Cook D R.2014.Introduction to the special issue devoted to alkali cporphyry Cu Au and epithermal Au deposits[J].Econ.Geol.,109(4):819-825.
    Chaussidon M and Lorand J P.1990.Sulphur isotope composition of orogenic spinel lherzolite massifs from ariege(north-eastern pyrenees,france):An ion microprobe study[J].Geochimica et Cosmochimica Acta,54(10):2835-2846.
    Chen L,Chen K Y,Bao Z A,Liang P,Sun T T and Yuan H L.2017.Preparation of standards for in situ sulfur isotope measurement in sulfide using femtosecond laser ablation MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry,32(1):107-116.
    Ding L and Lai Q Z.2003.New geological evidence of crustal thickening in the Gangdese Block prior to the Indo-Asian collision[J].Chinese Science,48(15):1610-1616.
    Ding L,Maksatbek S,Cai F L,Wang H Q,Song P P,Ji W Q,Xu Q,Zhang L Y,Muhammad Q and Upendra B.2017.Processes of initial collision and suturing between India and Asia[J].Science China(Earth Sciences),47(3):293-309.
    Han Y W and Ma Z D.2003.Geochemistry[M].Beijing:Geological Publishing House.1-370.
    He Y Y,Wen C Q and Liu X F.2016.Sulfur and lead isotope geochemical tracing of the Duobuza copper deposit,Tibet[J].Acta Petrologica et Mineralogica,35(5):855-862(in Chinese with English abstract).
    Hou Z Q,Qu X M,Huang W,and Huang Y F.2001.Gangdise porphyry copper metallogenic belt:The possible second“Yulong”copper belt[J].Chinese Geology,28(10):27-29(in Chinese with English abstract).
    Hou Z Q and Cook N J.2009.Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue[J].Ore Geology Reviews,36(1-3):2-24.
    Hou Z Q.2010.Metallogensis of continental collision[J].Acta Geologica Sinica,84(1):30-58(in Chinese with English abstract).
    Hou Z Q,Yang Z M,Lu Y C,Kemp A,Zheng Y C,Li Q Y,Tang J X,Yang Z S and Duan L F.2015a.A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J].Geology,43(3):247-250.
    Hou Z Q,Duan L F,Lu Y J,Zheng Y C,Zhu D C,Yang Z M,Yang ZS,Wang B D,Pei Y R,Zhao Z D and Campbell Mc T.2015b.Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J].Econ.Geol.,110(6):1541-1575.
    Hu Q C,LüX B,Gao Q,Liu H,Zhu J and Yang E L.2012.Dissolution and migration of Au in hydrothermal ore deposit:A Review[J].Advances in Earth Sciences,27(8):847-856(in Chinese with English abstract).
    Huang H X,Zhang L K,Liu H,Li G M,Huang Y,Lan S S and LüM H.2009.Major types,mineralization and potential prospecting areas in western section of the Gangdise metallogenic belt,Tibet[J/OL].Earth Science,doi:10.3799/dqkx.2018.364(in Chinese With English Abstract).
    Huang Y,Ding J,Tang J X,Lang X H,Chen Y and Zhang L.2011.Tectonic setting and source of ore-forming materials of No.Ⅰorebody in the Xiongcun copper-gold deposit,Tibet[J].Journal of Chengdu University of Technology(Science&Technology Edition),38(3):306-312(in Chinese with English abstract).
    Huang Y,Li G M,Ding J,Dai J,Yan G Q,Dong S L and Huang H X.2017.Origin the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau,SW China[J].Acta Geologica Sinica(English Edition),91(1):109-134.
    Huang Y,Tang J X,Zhang L and Lang X H.2014.Zircon U-Pb dating and Hf isotopic and trace element composition of intrusions from No.Ⅲorebody of Xiongcun porphyry copper-gold deposit,Tibet[J].Mineral Deposits,33(2):361-372(in Chinese with English abstract).
    Li F Q,Liu W,Zhang S Z and Wang B D.2012.Chronology and geochemical characteristics of Yawa mafic complex in the Dajiacuo area,southern Gangdese[J].Acta Geologica Sinica,86(10):1592-1603(in Chinese with English abstract).
    Li G M,Pan G T,Wang G M,Huang Z Y and Gao D F.2004.Evaluation and prospecting value of mineral resources in Gangdise metallogenic belt,Tibet,China[J].Journal of Chengdu University of Technology(Science&Technology Edition),31(1):22-27(in Chinese with English abstract).
    Li X Y,Chen W,Qu X M and Ma X D.2018.S,Pb isotopic characteristics of Xiongmei porphyry copper deposit in Tibet and their metallogenic significance[J].Mineral Deposits,37(3):643-655(in Chinese with English abstract).
    Lin B,Wang L Q,Tang J X,Song Y,Zhou X,Liu Z B,Gao Y M,Tang X Q and Xu R G and Chen Z J.2017.Zircon U-Pb geochronology of ore-bearing porphyries in Baomai deposit,Yulong copper belt,Tibet[J].Earth Science-Journal of China University of Geosciences,32(9):1454-1471(in Chinese with English abstract).
    Liu H,Li G M,Huang H X,Cao H W,Yuan Q,Li Y X,Ouanyuan Y,Lan S S,LüM H and Yan G Q.2018.Petrogenesis of Late Cretaceous Jiangla’angzong I-Type Granite in Central Lhasa Terrane,Tibet,China:Constraints from Whole-Rock Geochemistry,Zircon U-Pb Geochronology,and Sr-Nd-Pb-Hf Isotopes[J].Acta Geologica Sinica(English Edition),92(4):1396-1414.
    Liu H,LüX B,Li C C,Liu G,Shang S C,Wang L,Zhang W and Mao R W.2013.Metallogenic conditions and ore-searching prospect at depth of the jincheng gold ore de posit in Luoshan County,Henan Province[J].Geology and Exploration,49(2):265-273(in Chinese with English abstract).
    Liu H,Zhang L K,Huang H X,Li G M,LüM H,Yan G Q,Huang Y,Lan S S and Xie H.2019a.Origin and evolution of ore-forming fluids in Luerma porphyry copper deposit from the western Gangdise[J/OL].Earth Science,doi:10.3799/dqkx.2018.370(in Chinese With English Abstract).
    Liu H,Zhang L K,Huang H X,Li G M,Ouyang Y,LüM H,Liu H,Lan S S and Yan G Q.2019b.Petrogenesis of Late Triassic Luerma monzodiorite in wertern Gangdese,Tibet,hina[J/OL].Earth Scienced,doi:10.3799/dqkx.2019.051.
    Mao J W,Pirajno F,Lehmann B,Luo M C and Berzina A.2014.Distribution of porphyry deposits in the eurasian continent and their corresponding tectonic settings[J].Journal of Asian Earth Sciences,79(2):576-584.
    Meng X J,Hou Z Q and Li Z Q.2006.Sulfur and lead isotope compositions of the Qulong porphyry copper deposit,Tibet:Implications for the sources of plutons and metals in the deposit[J].Acta Geologica Sinica,80(4):554-560(in Chinese with English abstract).
    Miller C,Schuster R,Kltzli U,Frank W and Purtscheller F.1999.Postcollisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J].Journal of Petrology,40(9):1399-1424.
    Mo X X,Niu Y L,Dong G C,Zhao Z D,Hou Z Q,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J].Chemical Geology,250(1):49-67.
    Ohmoto H.1972.Systematics of sulfur and carbon isotopesinhydrothermal ore deposits[J].Econ.Geol.,67(5):551-578.
    Ohmoto H and Goldhaber M B.1997.Sulphur and carbon isotopes[A].In:Barnes H L,ed.Geochemistry of hydrothermal ore deposits,3rd Edition[C].Wiley:New York.517-612.
    Pan G T,Mo X X,Hou Z.Q,Zhu D C,Wang L Q,Li G M,Zha Z D,Geng,Q R and Liao Z L.2006.Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J].Acta Petrologica Sinica,22(3):521-533(in Chinese with English abstract).
    Pan G T,Wang L Q,Li R S,Yuan S H,Ji W H,Yin F G,Zhang W Pand Wang B D.2012.Tectonic evolution of the Qinghai-Tibet plateau[J].Journal of Asian Earth Sciences,53:3-14.
    Royden L H,Burchfiel B C and Hilst R D V D.2008.The geological evolution of the Tibetan plateau[J].Science,321:1054-1058.
    Rui Z Y,Hou Z Q,Li G M,Liu B,Zhang L S and Wang L S.2006.Agenetic model for the Gandisêporphyry copper deposits[J].Geological Review,52(4):459-466(in Chinese with English abstract).
    Selvaraja V,Fiorentin M L,Laflamme C K,Wing B A and Bui T H.2017.Anomalous sulfur isotopes trace volatile pathways in magmatic arcs[J].Geology,45(5):419-422.
    She H Q,Li G M,Dong Y J,Pan G T,Li J W,Zhang D Q and Feng CY.2009.Regional metallogenic prognosis and mineral reserves estimation for porphyry copper deposits in Gangdese polymetallic ore belt,Tibet[J].Mineral Deposits,28(6):803-814(in Chinese with English abstract).
    Sillitoet R H.2010.Porphyry copper system[J].Econ.Geol.,105(1):3-41.
    Song Y,Tang J X,Qu X M,Wang D H,Xin H B,Yang C,Lin B and Fan S F.2014.Progress in the study of mineralization in the bangongco-Nujiang metallogenic belt and some new recognition[J].Advances in Earth Science,29(7):795-809(in Chinese with English abstract).
    Sun X,Zheng Y Y,Li M,Ouyang H T,Liu Q Q,Jing X K,Sun G P and Song Q J.2017.Genesis of Luobuzhen Pb-Zn Veins:Implications for Porphyry Cu Systems and exploration Targeting at LuobuzhenDongshibu in western Gangdese Belt,southern Tibet[J].Ore Geology Reviews,82:252-267.
    Tafti R,Mortensen J K,Lang J R,Rebagliati M and Oliver J L.2009.Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au porphyry district,Tibet,Prc:Implications for metallogenic epochs in the southern Gangdese Belt[J].Econ.Geol.,104:127-136.
    Tang J X.Zhang L,Li Z J,Chen J P,Huang W and Wang Q.2006.Porphyry copper deposit controlled by structural nose trap:Yulong porphyry copper deposit in eastern Tibet[J].Mineral Deposits,25(6):652-662(in Chinese with English abstract).
    Tang J X,Chen Y C,Wang D H,Wang C H,Xu C P,Qu W J,Huang W and Huang Y.2009.Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongbo'gyamda County,Tibet and its geological significance[J].Acta Geologica Sinica,83(5):698-704(in Chinese with English abstract).
    Tang J X,Li F J,Li Z J,Zhang L,Tang X Q,Deng Q,Lang X H,Huang Y,Yao X F and Wang Y.2010.Time limit for formation of main geological bodies in Xiongcun copper-gold deposit,Xietongmen County,Tibet:Evidence from zircon U-Pb ages and Re-Os age of molybdenite[J].Mineral Deposits,29(3):461-475(in Chinese with English abstract).
    Tang J X,Wang Q,Yang H H,Gao X,Zhang Z B and Zou B.2017.Mineralization,exploration and resource potential of porphyryskarn-epithermal copper polymetallic deposits in Tibet[J].Acta Geoscientica Sinica,38(5):571-614(in Chinese with English abstract).
    Taylor B E.1986.Magmatic volatiles:Isotope variation of C,H and Sreviews in mineralogy[J].Mineralogical Society of America,16:185-226.
    Wang R,Richards J P,Hou Z Q,Yang Z M,Gou Z B and Du Frane SA.2014a.Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Tibetan Gangdese belt:Implication for collision-related porphyry Cu-Mo±Au mineralization[J].Econ.Geol.,109(7):1943-1965.
    Wang R,Richards J P,Hou Z Q and Yang Z M.2014b.Extent of underthrusting of the Indian plate beneath Tibet controlled of Miocene porphyry Cu-Mo±Au deposits[J].Mineralium Deposita,49:165-173.
    Wang R,Weinberg R F,Collins W J,Richards J P and Zhu D C.2018.Origin of post-collisional magmas and fromation of porphyry Cu deposits in southern Tibet[J].Earth-Science Reviews(Invited),181:122-143.
    Wilson W.1989.Igneous petrogenesis[M].London:Unwin Hyman.1-446.
    Xu Z Q,Dilek Y,Cao H,Yang J S,Robinson P,Ma C Q,Li H Q,Jolivet M,Roger F and Chen X J.2015.Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J].Journal of Asian Earth Sciences,105:320-337.
    Xu Z Q,Yang J S,Li W C,Li H Q,Cai Z H,Yan Z and Ma C Q.2013.Paleo-tethys system and accretionary orogen in the Tibet plateau[J].Acta Petrologica Sinica,29(6):1847-1860(in Chinese with English abstract).
    Yang J S,Xu Z Q,Li T F,Li H Q,Li Z L,Ren Y F,Xu X Z and Chen SY.2007.Oceanic subduction-type eclogite in the Lhasa block,Tibet,China:Remains of the paleo-tethys ocean basin[J]?Geological Bulletin of China,26(10):1277-1287(in Chinese with English abstract).
    Yang L Q,Deng J,Guo C Y,Zhang J,Jiang S Q,Gao B F,Gong Q Jand Wang Q F.2009.Ore forming fluid characteristics of the Dayingezhuang gold deposit,Jiaodong gold province,China[J].Resource Geology,59(2):182-193.
    Yang Z M,Hou Z Z,Chang Z S,Li Q Y,Liu Y F,Qu H C,Sun M Yand Xu B.2016.Cospatial eocene and miocene granitoids from the Jiru Cu deposit in Tibet:Petrogenesis and implications for the fromation of collisional and postcollisional porphyry cu systems in continental collision zones[J].Lithos,245(3):243-257.
    Yuan H L,Liu X,Chen L,Bao Z A,Chen K Y,Zong C L,Li X C and Qiu W H J.2018.Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers[J].Journal of Asian Earth Sciences,154:386-396.
    Zartman R E and Doe B R.1981.Plumbotectonics the model[J].Tectonophysics,75:135-142
    Zhao J X,Qin K Z,Li G M,Li J X,Xiao B,Chen L,Yang Y H,Li Cand Liu Y S.2014.Collision-related genesis of the sharang porphyry molybdenum deposit,Tibet:Evidence from zircon U-Pb ages,Re-Os ages and Lu-Hf isotopes[J].Ore Geology Reviews,56:312-326.
    Zheng Y F and Xu B L.2000.Geochemical studies of stable isotopes in minerals[J].Earth Science Frontiers,7(2):299-320(in Chinese with English abstract).
    Zheng Y Y,Sun X,Gao S B,Wu S,Xu J,Jiang J S,Chen X,Zhao Z Yand Liu Y.2015.Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J].Journal of Asian Earth Sciences,103:23-39.
    Zheng Y Y,Zhang G Y,Xu R K,Gao S B,Pang Y C,Cao L,Du A Dand Shi Y R.2007a.Geochronologic constraints on magmatic intrusions and mineralization of the zhunuo porphyry copper deposit in Gangdese,tibet[J].Chinese Science Bulletin,52(22):3139-3147(in Chinese with English abstract).
    Zheng Y Y,Duo J,Zhang G Y,Gao S B and Fan Z H.2007b.Discovery of Jiru porphyry copper deposit in Tibet and its significance[J].Mineral Deposits,26(3):317-321(in Chinese with English abstract).
    Zhou Q,Jiang Y H,Zhao P,Liao S Y,Jin G D,Liu Zmand Jia R Y.2012.SHRIMP U-Pb dating on hydrothermal zircons:Evidence for an Early Cretaceous epithermal event in the middle Jurassic dexing porphyry copper deposit,southeast China[J].Econ.Geol.,107(7):1507-1514.
    Zhu D C,Pan G T,Chung S L,Liao Z L,Wang L Q and Li G M.2008.SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba Fromation,southern Gangdese,South Tibet[J].International Geology Review,50(5):442-471.
    韩吟文,马振东.2003.地球化学[M],北京:地质出版社.1-370.
    何阳阳,温春齐,刘显凡.2016.西藏多不杂铜矿床硫铅同位素地球化学示踪[J].岩石矿物学杂志,35(5):855-862.
    侯增谦,曲晓明,黄卫,高永丰.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27-29.
    侯增谦.2010.大陆碰撞成矿论[J].地质学报,84(1):30-58.
    胡庆成,吕新彪,高奇,刘洪,朱江,杨恩林.2012.热液金矿金的溶解和迁移研究进展[J].地球科学进展,27(8):847-856.
    黄瀚霄,张林奎,刘洪,李光明,黄勇,兰双双,吕梦鸿.2019.西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向[J/OL].地球科学.doi:10.3799/dqkx.2018.364.
    黄勇,丁俊,唐菊兴,郎兴海,陈渊,张丽.2011.西藏雄村铜金矿床Ⅰ号矿体成矿构造背景与成矿物质来源探讨[J].成都理工大学学报(自然科学版),38(3):306-312.
    黄勇,唐菊兴,张丽,郎兴海.2014.西藏雄村斑岩铜金矿床Ⅲ号矿体岩浆岩锆石U-Pb年龄、Hf同位素及微量元素组成[J].矿床地质,33(2):361-372.
    李奋其,刘伟,张士贞,王保弟.2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征[J].地质学报,86(10),1592-1603.
    李光明,潘桂棠,王高明,黄志英,高大发.2004.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报(自然科学版),31(1):22-27.
    黎心远,陈伟,曲晓明,马旭东.2018.西藏申扎县雄梅铜矿床的硫、铅同位素特征及其成矿意义[J].矿床地质,37(3):643-655.
    林彬,王立强,唐菊兴,宋扬,周新,刘治博,高一鸣,唐晓倩,徐瑞阁,陈早军.2017.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学[J].地球科学-中国地质大学学报,32(9):1454-1471.
    刘洪,吕新彪,李春诚,刘阁,尚世超,王林,张伟,毛荣威.2013.河南罗山金城金矿床成矿条件与深部找矿前景分析[J].地质与勘探,49(2):265-273.
    刘洪,张林奎,黄瀚霄,李光明,吕梦鸿,闫国强,黄勇,兰双双,解惠.2019a.冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J/OL].地球科学.doi:10.3799/dqkx.2018.370.
    刘洪,张林奎,黄瀚霄,李光明,欧阳渊,吕梦鸿,刘函,兰双双,闫国强.2019b.西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J/OL].地球科学.doi:10.3799/dqkx.2019.051.
    孟祥金,侯增谦,李振清.2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,80(4):554-560.
    潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521-533.
    芮宗瑶,侯增谦,李光明,刘波,张立生,王龙生.2006.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):459-466.
    佘宏全,李光明,董英君,潘桂棠,李进文,张德全,丰成友.2009.西藏冈底斯多金属成矿带斑岩铜矿定位预测与资源潜力评价[J].矿床地质,28(6):803-814.
    宋扬,唐菊兴,曲晓明,王登红,辛洪波,杨超,林彬,范淑芳.2014.西藏班公湖-怒江成矿带研究进展及一些新认识[J].地球科学进展,29(7):795-809.
    唐菊兴,张丽,李志军,陈建平,黄卫,王乾.2006.西藏玉龙铜矿床--鼻状构造圈闭控制的特大型矿床[J].矿床地质,25(6):652-662.
    唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇.2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698-704.
    唐菊兴,黎风佶,李志军,张丽,唐晓倩,邓起,郎兴海,黄勇,姚晓峰,王友.2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,29(3):461-475.
    唐菊兴,王勤,杨欢欢,高昕,张泽斌,邹兵.2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报,38(5):571-614.
    许志琴,杨经绥,李文昌,李化启,蔡志慧,闫臻,马昌前,2013.青藏高原中的古特提斯体制与增生造山作用[J].岩石学报,29(6):1847-1860.
    杨经绥,许志琴,李天福,李化启,李兆丽,任玉峰,徐向珍,陈松永.2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留[J]?地质通报,26(10):1277-1287.
    郑永飞,徐宝龙.2000.矿物稳定同位素地球化学研究[J].地学前缘,7(2):299-320.
    郑有业,张刚阳,许荣科,高顺宝,庞迎春,曹亮,杜安道,石玉若,2007a.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,52(21):2542-2548.
    郑有业,多吉,张刚阳,高顺宝,樊子珲.2007b.西藏吉如斑岩铜矿床的发现过程及意义[J].矿床地质,26(3):317-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700