用户名: 密码: 验证码:
流式细胞仪测定荔枝倍性和基因组大小的细胞核提取液筛选与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nuclear isolation buffer optimization and the determination of ploidy level and genome size of litchi using flow cytometry
  • 作者:赖彪 ; 吴传龙 ; 秦永华 ; 刘成明 ; 冯奇瑞 ; 叶自行 ; 胡桂兵 ; 王惠聪
  • 英文作者:LAI Biao;WU Chuanlong;QIN Yonghua;LIU Chengming;FENG Qirui;YE Zixing;HU Guibing;WANG Huicong;School of Advanced Agriculture and Bioengineering,Yangtze Normal University;College of Horticulture,South China Agricultural University;
  • 关键词:荔枝 ; 流式细胞术 ; 细胞核提取液 ; 倍性 ; 基因组大小
  • 英文关键词:Litchi chinensis Sonn.;;Flow cytometry;;Nuclei isolation buffer;;Ploidy;;Genome size
  • 中文刊名:GSKK
  • 英文刊名:Journal of Fruit Science
  • 机构:长江师范学院现代农业与生物工程学院;华南农业大学园艺学院;
  • 出版日期:2019-07-12 10:17
  • 出版单位:果树学报
  • 年:2019
  • 期:v.36
  • 基金:国家现代农业产业技术体系建设专项资金资助项目“国家荔枝龙眼产业技术体系”(CARS-33);; 长江师范学院校级科研项目(2016KYQD20和2016XJQN06)
  • 语种:中文;
  • 页:GSKK201907013
  • 页数:8
  • CN:07
  • ISSN:41-1308/S
  • 分类号:117-124
摘要
【目的】流式细胞术是目前测定植物倍性和基因组大小差异的最快、最有效的方法。建立适合荔枝的流式细胞术的方法,对荔枝倍性育种以及基因组大小的确定是必不可少的。【方法】笔者以荔枝的幼嫩叶片为材料,筛选适合荔枝的细胞核提取液配方,建立利用流式细胞仪测定荔枝倍性和基因组大小的方法。用改进的标准两步法,比较了6种常用细胞核提取液提取细胞核的效果。【结果】利用WPB(Woody Plant Buffer)提取的大部分荔枝品种(品系)叶片细胞核稳定、分辨率高、细胞碎片少且细胞G0/G1峰的变异系数(CV)较低,平均CV值为5.12%,说明该配方适用于酚类物质丰富的荔枝细胞核的提取。同时以已知染色体数量的‘无核荔’(2n=30)为外标,检测了18个品种(品系)的倍性,发现参测样品的G0/G1峰与‘无核荔’G0/G1峰的荧光均值的比值为0.78~1.24,说明所测荔枝品种(品系)均为二倍体。以已知基因组大小的‘Stupicképolnírané’番茄为内标测定了14个品种(品系)的基因组大小,结果表明荔枝基因大小约为550~620 Mb,平均602 Mb,不同荔枝品种(品系)间基因组大小存在一定差异。【结论】WPB细胞核提取液提取的荔枝幼嫩的叶片的细胞核质量好,可用于流式细胞术荔枝倍性和基因组大小的测定,测定的结果显示参测荔枝品种(品系)均为二倍体,无单倍或多倍的情况,不同荔枝品种基因组大小有一定的差异。
        【Objective】Flow cytometry is particularly applicable in the determination of ploidy and genome size of diverse plant samples because it is convenient, fast and reliable. The sample preparation in flow-cytometry determination is relatively simple and less costly. The nuclei can be counted in a short time using a sample volume of only a few milligrams of plant tissues. Although chromosome counting has been used in ploidy determination in plants, in many cases representative picture of a cell population is difficult to obtain and the determination is inefficient. DNA flow cytometry requires preparation of the suspensions of intact nuclei, and suitable nuclei isolation buffer is a bottleneck for litchi ploidy and genome size estimation. The main problem is that it is not easy to prepare suspensions of intact nuclei from the leaves of woody plants, which contain cells with a rigid cell wall and secondary metabolites. This study aimed to choose the best nuclei isolation buffer and establish an appropriate flow cytometry method for litchi ploidy and genome size estimation.【Methods】In this study, young litchi leaves were selected as material to compare the nuclei isolation efficiency and extraction quality among six frequently-used buffers, including Otto's, MgSO4, Tris-MgCl2, Galbraith's, WPB and GPB buffer,using modified two step procedures. First, place a small amount of young litchi leaf(typically 50-100 mg) in the center of a glass petri dish, which was placed on ice to keep the sample cold. Then add 2 mL ice-cold nuclei isolation buffer to the petri dish and chop the tissue immediately in the buffer with a razor blade(use new one for each sample). Filter the chopped solution through a 53 mm nylon mesh into a new a 2 mL Eppendorf tube, which was centrifuged(1 000 r·min~(-1)) for 5 minutes at 4 ℃ and the supernatant was carefully remove. The nuclei in the sediment was re-suspended by gentle shaking in400 μL new nuclei isolation buffer supplemented with 50 μg·mL~(-1) PI(Propidium iodide) and 50 μg·mL~(-1) RNase, and filtered through a 42 mm nylon mesh. Incubate the sample for a few minutes, with occasional shaking before testing. The isolated nuclei were analyzed by Beckman Cell Lab Quanta SC FL3 fluorescence channel. The G0/G1 fluorescence value and CV(Coefficient of variation) were analyzed by Cell Lab Quanta SC software. CV of DNA peaks, presence of debris background and the number of nuclei released from sample tissue were the key parameters to evaluate those buffers.【Results】Clear differences among buffers were observed. After chopping the young leaf tissue in Tris-MgCl2, Galbraith's or GPB isolation buffer, the isolated nuclei solution turned brown quickly, indicating that they are not suitable for litchi leaf nuclei isolation. In contrast, Otto's Buffer, MgSO4 and WPB could isolate the nuclei and the nuclei solution stayed green. The CV of G0/G1 fluorescence peak obtained using MgSO4 buffer and Otto's was 8.35% and 5.64%, respectively. A much better nuclei stability, higher integrity and resolution ratio, but lower amount of cell debris and CV of G0/G1 peak(3.25%) were obtained in most of samples tested using Woody Plant Buffer(WPB). These results indicated that WPB buffer was the most suitable nuclei isolation buffer for young litchi leaf and can be used for further study like ploidy and genome size estimation. Subsequently ploidy level of 18 tested cultivars/lines were determined by flow cytometry using known chromosome number cultivar'Wuheli'(2 n=30) as an external standard. The results showed that the fluorescence ratio of the G0/G1 peak among tested 18 samples compare to'Wuheli'range from 0.78 to 1.24, which suggested that the tested cultivars/lines should belong to diploid. Genome size of 14 cultivars/lines was also determined by flow cytometry using'Stupicképolní rané', a known genome size(958 Mb) tomato, as an internal standard control. The genome size of litchi ranged from 550 to 620 Mb with an average size of 602 Mb. Flow cytometry revealed the great variation in genome sizes among different litchi cultivars/lines.【Conclusion】Among the six frequently-used buffers, WPB nuclei isolation buffer was found to be the most effective for litchi young leaf nuclei isolation. The isolated nuclei can be used for litchi ploidy level, genome size determination and maybe other studies. The results also indicated that all the tested cultivars/lines are diploid. The genome size of litchi varies among different cultivars/lines. Hopefully, these results will provide useful information in the further studies of litchi ploidy and genome size and also new clue for other woody plant crops.
引文
[1] ROBERTS A V,GLADIS T,BRUMME H. DNA amounts of roses(Rosa L.)and their use in attributing ploidy levels[J]. Plant Cell Reports,2009,28(1):61-71.
    [2] OZKAN,H,TUNA,M,KILIAN,B,MORI,N,OHTA,S.(2010). Genome size variation in diploid and tetraploid wild wheats[J]. AoB Plants,2010:plqo15.
    [3] MIYASHITA T,ARAKI H,HOSHINO Y. Ploidy distribution and DNA content variations of Lonicera caerulea(caprifoliaceae)in Japan[J]. Journal of Plant Research,2011,124(1):1-9.
    [4] PHILLIPS N,KAPRAUN D F,GOMEZ GARRETA A,RIBERA SIGUAN M A,RULL J L,SALVADOR SOLER N,LEWIS R,KAWAI H. Estimates of nuclei DNA content in 98species of brown algae(Phaeophyta)[J]. AoB Plants,2011:r001.
    [5] SEDZIELEWSKA K A,FUCHS J,TEMSCH E M,BARONIAN K,WATZKE R,KUNZE G. Estimation of the Glomus intraradices nuclei DNA content[J]. New Phytologist,2011,192(4):794-797.
    [6] LOUREIRO J,RODRIGUEZ E,DOLEZEL J,SANTOS C.Comparison of four nuclei isolation buffers for plant DNA flow cytometry[J]. Annals of Botany,2006,98(3):679-689.
    [7] DOLEZEL J,GREILHUBER J,SUDA J. Estimation of nuclei DNA content in plants using flow cytometry[J]. Nature Protocols,2007,2(9):2233-2244.
    [8] GALBRAITH D W,HARKINS K R.,MADDOX J M,AYRES N M,SHARMA D P,FIROOZABADY E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues[J]. Science,1983,220(4601):1049-1051.
    [9] OTTO F. 11 DAPI staining of fixed cells for high-resolution flow cytometry of nuclei DNA[J]. Methods in Cell Biology,1990,33:105-110.
    [10] ARUMUGANATHAN K,EARLE E. Nuclei DNA content of some important plant species[J]. Plant Molecular Biology Reporter,1991,9(3):208-218.
    [11] DOLEZEL J,GOHDE W. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry[J]. Cytometry,1995,19(2):103-106.
    [12] PFOSSER M,AMON A,LELLEY T,HEBERLE-BORS E.Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines[J]. Cytometry,1995,21(4):387-393.
    [13] LOUREIRO J,RODRIGUEZ E,DOLEZEL J,SANTOS C. Two new nuclear isolation buffers for plant DNA flow cytometry:a test with 37 species[J]. Annals of Botany,2007,100(4):875-888.
    [14] DOLEZEL J,GREILHUBER J,SUDA J. Flow cytometry with plant cells:analysis of genes,chromosomes and genomes[M].Weinheim:Wiley-VCH,2007:67-95.
    [15]田新民,周香艳,弓娜.流式细胞术在植物学研究中的应用-检测植物核DNA含量和倍性水平[J].中国农学通报, 2011,27(9):21-27.TIAN Xinmin,ZHOU Xiangyan,GONG Na. Applications of flow cytometry in plant research:analysis of Nuclei DNA content and ploidy level in plant cells[J]. Chinese Agricultural Science Bulletin,2011,27(9):21-27.
    [16]陶抵辉,李小红,王利群,周杰良,陈涌,霍稳根.植物染色体倍性鉴定方法研究进展[J].生命科学研究,2009,13(5):453-458.TAO Dihui,LI Xiaohong,WANG Liqun,ZHOU Jieliang,CHEN Yong,HUO Wengen. Progresses on determination of cell chromesome ploidy level of plants[J]. Life Science Research,2009,13(5):453-458
    [17] MENG R,FINN C. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry[J]. Journal of the American Society for Horticultural Science,2002,127(5):767-775.
    [18] OBIDIEGWU J,LOUREIRO J,ENEOBONG E,RODRIGUEZ E,KOLESNIKOVAALLEN M,SANTOS C,MUONEKE C,ASIEDU R. Ploidy level studies on the Dioscorea cayenensis/Dioscorea rotundata complex core set[J]. Euphytica,2009,169(3):319-326.
    [19] OBIDIEGWU J,RODRIGUEZ E,ENEOBONG E,LOUREIRO J,MUONEKE C,SANTOS C,KOLESNIKOVA,A M,ASIEDU R. Ploidy levels of Dioscorea alata L. germplasm determined by flow cytometry[J]. Genetic resources and crop evolution,2010,57(3):351-356.
    [20] BENNETT M D,LEITCH I J. Nuclear DNA amounts in angiosperms:targets,trends and tomorrow[J]. Annals of Botany,2011,107(3):467-590.
    [21] OUMAR D,SAMA A E,ADIOBO A,ZOK S. Determination of ploidy level by flow cytometry and autopolyploid induction in cocoyam(Xanthosoma sagittifolium)[J]. African Journal of Biotechnology,2011,10(73):16491-16494.
    [22]吕柳新,陈景渌,陈晓静.荔枝(Litchi chinensis Soon.)染色体数目与花粉母细胞减数分裂的研究[J].福建农学院学报,1987,3(16):224-228.LU Liuxin,CHEN Jinglu,CHEN Xiaojing. An approach to the chromosome unmber and meisoes of pollen mother cells in litchi(Litchi chinensis soon.)[J]. Journal of Fujian Agricultural University,1987,3(16):224-228
    [23]张永福,卢博彬,王英,潘丽佳,胡又厘,周佳,赵海燕,刘成明.荔枝和龙眼部分珍稀种质的染色体观察[J].园艺学报,2010,37(12):1991-1994.ZHANG Yongfu,LU Bobin,WANG Ying,PAN Lijia,HU Youli,ZHOU Jia,ZHAO Haiyan,LIU Chengming. The chromosomes observation of several rare germplasm in litchi and longan[J].Acta Horticulturae Sinica,2010,37(12):1991-1994
    [24]李彩琴,王泽槐,徐咏珊,张劲霭,李建国.流式细胞术细胞核分离缓冲液的改良及大、小果型荔枝幼果和果皮细胞分裂活性比较[J].园艺学报,2011,38(9):1781-1790.LI Caiqin,WANG Zehuai,XU Yongshan,ZHANG Jinguo,LI Jianguo. Improvement of the cell nuclei suspensions for flow cytometry and comparison on the cell division activity of litchi fruitlet and pericarp which having different final fruit size[J] Acta Horticulturae Sinica,2011,38(9):1781-1790.
    [25] VANBUREN R,LI J,ZEE F,ZHU J,LIU C,ARUMUGANATHAN A K,MING R. Longli is not a hybrid of longan and lychee as revealed by genome size analysis and trichome morphology[J]. Tropical Plant Biology,2011(4):228-236.
    [26] DOLE?EL J,SGORBATI S,LUCRETTI S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants[J]. Physiologia Plantarum,1992,85(4):625-631.
    [27] DOLE?EL J,BARTOS J,VOGLMAYR H,GREILHUBER J.Nuclear DNA content and genome size of trout and human[J].Cytometry A,2003,51(2):127-129.
    [28] EMSHWILLER E. Ploidy levels among species in the‘Oxalis tuberosa Alliance’as inferred by flow cytometry[J]. Annals of Botany, 2002, 89(6):741-753.
    [29]王利虎,吕晔,罗智,刘平,刘孟军.流式细胞术估测枣染色体倍性和基因组大小方法的建立及应用[J].农业生物技术学报,2018, 26(3):511-520.WANG Lihu, LüHua, LUO Zhi, LIU Ping, LIU Mengjun. Establishment and Application of a Method for Chromosome Ploidy Identification and Genome Size Estimation Using Flow Cytometry in Ziziphus jujube[J]. Journal of Agricultural Biotechnology, 2018, 26(3):511-520.
    [30]李诗琦,张程,高信芬.应用流式细胞术测定17种中国野生蔷薇核DNA含量[J].植物科学学报, 2017, 35(4):558-565.LI Shiqi, ZHANG Chen, GAO Xinfen. Estimation of nuclei DNA content of 17 Chinese wild rose species by flow cytometry[J]. Plant Science Journal, 2017, 35(4):558-565.
    [31]杜文文,王祥宁,段青,贾文杰,马璐琳,崔光芬,王继华. 34种秋海棠基因组大小比较与分析[J].植物遗传资源学报, 2018,19(2):370-376.DU Wenwen, WANG Xiangning, DUAN Qing, JIA Wenjie, CUI Guangfen, WANG Jihua. Genome size comparison in 34 Begonia L. species[J]. Journal of Plant Genetic Resources, 2018, 19(2):370-376.
    [32] JOHNSTON J S,BENNETT M D,RAYBURN A L,GALBRAITH D W,PRICE H J. Reference standards for determination of DNA content of plant nuclei[J]. American Journal of Botany,1999,86(5):609-613.
    [33] LEAL F,LOUREIRO J,RODRIGUEZ E,PAIS M S,SANTOS C,PINTO C O. Nuclei DNA content of Vitis vinifera cultivars and ploidy level analyses of somatic embryo derived plants obtained from anther culture[J]. Plant Cell Reports,2006,25(9):978-985.
    [34] KRON P,SUDA J,HUSBAND B C. Applications of flow cytometry to evolutionary and population biology[J]. Annual Review of Ecology Evolution and Systematics,2007,38:847-876.
    [35] LODHI M A,REISCH B I. Nuclei DNA content of Vitis species,cultivars,and other genera of the Vitaceae[J]. Theoretical and Applied Genetics,1995,90(1):11-16.
    [36] The Arabidopsis Genome. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408:796-815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700