用户名: 密码: 验证码:
马铃薯低温响应的ScmiR390-5p及其靶基因表达与结构分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature
  • 作者:谢洁 ; 王明 ; 丁红映 ; 李青 ; 王万兴 ; 熊兴耀 ; 秦玉芝
  • 英文作者:XIE Jie;WANG Ming;DING HongYing;LI Qing;WANG WanXing;XIONG XingYao;QIN YuZhi;College of Horticulture and Landscape, Hunan Agricultural University;Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences;
  • 关键词:马铃薯 ; ScmiR390-5p ; SCLRRK1 ; 实时荧光定量PCR ; RLM-5′RACE
  • 英文关键词:potato;;ScmiR390-5p;;SCLRRK1;;quantitative real-time PCR;;RLM-5′RACE
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:湖南农业大学园艺园林学院;中国农业科学院蔬菜花卉研究所;
  • 出版日期:2019-07-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31371683)
  • 语种:中文;
  • 页:ZNYK201913009
  • 页数:14
  • CN:13
  • ISSN:11-1328/S
  • 分类号:108-121
摘要
【目的】研究马铃薯富含亮氨酸重复序列(leucine-rich repeat receptor-like protein kinase LRR-RLK)类受体蛋白激酶基因SCLRRK1受miR390(ScmiR390-5p)调控响应非生物胁迫的机理。【方法】通过低温响应马铃薯miRNA测序分析与靶基因预测,发现ScmiR390-5p通过调控1个可能的LRR类受体蛋白激酶基因对低温做出响应;利用实时荧光定量PCR技术(Quantitative Real-time PCR,RT-qPCR)验证ScmiR390-5p和SCLRRK1响应低温胁迫的表达情况;利用RLM-5′RACE确定ScmiR390-5p作用于SCLRRK1的切割位点;利用PCR技术克隆得到SCLRRK1的DNA序列和CDS序列,生物信息学分析SCLRRK1的结构和功能;利用RT-qPCR分析ScmiR390-5p/SCLRRK1在马铃薯各组织中的表达情况及其响应各种非生物胁迫的表达情况。【结果】RT-qPCR结果表明,低温诱导ScmiR390-5p表达,SCLRRK1的表达则受到低温的抑制,ScmiR390-5p和SCLRRK1的表达在低温胁迫下呈负相关性;RLM-5′RACE分析表明,ScmiR390-5p作用于SCLRRK1的切割位点是ATTCCT//CCTGAGTT,马铃薯ScmiR390-5p/SCLRRK1调控模块在低温响应中起作用。克隆结果表明SCLRRK1的CDS序列长度为2 685bp,编码894个氨基酸,DNA序列长度为3 549 bp,含有1个内含子、2个外显子、3′非编码区和5′非编码区,ScmiR390-5p的靶位点位于SCLRRK1 CDS序列内部(960—981 bp,GGAACTATTCCTCCTGAGTTT)。生物信息学显示SCLRRK1是1个富含亮氨酸重复序列(leucine-richrepeat,LRR)的类受体蛋白激酶基因,编码的蛋白属于跨膜分泌蛋白。马铃薯组织表达RT-qPCR分析显示,ScmiR390-5p在叶中的表达量最高,根次之,茎中(地上茎、块茎和匍匐茎)表达量较低;而SCLRRK1的表达情况与ScmiR390-5p相反,其在叶中的表达最低,在茎中表达最高(匍匐茎>块茎>地上茎)。多种非生物胁迫结果显示,ScmiR390-5p和SCLRRK1表达在NaCl胁迫下呈负相关,ScmiR390-5p受到NaCl胁迫诱导表达。与对照相比,ABA和6-BA处理下ScmiR390-5p表达先下降之后呈波浪小幅回调;6-BA处理下SCLRRK1表达持续升高,ABA处理下SCLRRK1表达先上升后下降。GA3、PEG和IAA处理8 h时,ScmiR390-5p的表达达到峰值,GA3、PEG和IAA处理都能诱导SCLRRK1表达,但其变化趋势与ScmiR390-5p相关性不强。【结论】SCLRRK1具备编码LRR类受体蛋白激酶的核酸、氨基酸序列和结构基础,是ScmiR390-5p的靶基因;ScmiR390-5p/SCLRRK1调控模块在马铃薯组织器官中具备明显作用;ScmiR390-5p在转录后水平通过抑制马铃薯SCLRRK1的表达对低温胁迫做出响应,同时,马铃薯ScmiR390-5p/SCLRRK1调控模块在NaCl和6-BA胁迫响应中起作用,但不对ABA、GA3、IAA和PEG胁迫做出响应,ScmiR390-5p和SCLRRK1分别在转录水平受到ABA、GA3、IAA和PEG胁迫信号调控。
        The study was carried out to investigate the mechanism of potato leucine-rich repeat receptor-like protein kinase(LRR-RLK) receptor protein kinase SCLRRK1 regulated by miR390(ScmiR390-5 p) in response to abiotic stress.【Method】 By sequencing and analyzing potato miRNAs in response to low temperature conditions and predicting target genes, we found that ScmiR390-5 p responded to low temperatures by regulating a potential LRR-like receptor protein kinase gene. The expression levels of ScmiR390-5 p and SCLRRK1 in response to low temperature stress were verified by quantitative real-time PCR(RT-qPCR). The cleavage site of ScLRR390-5 p on SCLRRK1 was determined by using RLM-5'RACE. The DNA sequence and CDS sequence of SCLRRK1 were cloned by PCR and the structure and function of SCLRRK1 were predicted by bioinformatics analysis. The expression levels of ScmiR390-5 p/SCLRRK1 in various tissues of potato and under various abiotic stress were analyzed by RT-qPCR. 【Result】 The results of RT-qPCR showed that the expression of ScmiR390-5 p was induced by low temperature, while the expression of SCLRRK1 was inhibited. There was a negative correlation between the expression of ScmiR390-5 p and scrrk1 under low temperature stress. The result of RLM-5′RACE indicated that cleavage site of ScmiR390-5 p on SCLRRK1 was ATTCCT//CCTGAGTT, and potato ScmiR390-5 p/SCLRRK1 regulatory module was respond to low temperature. The cloning results indicated that the CDS of SCLRRK1 was 2 685 bp in length, encoding 894 amino acids, and the gene sequence was 3 549 bp containing 1 intron, 2 exons, 3' non-coding region and 5' non-coding region. ScmiR390-5 p target site was located at SCLRRK1 CDS(960-981 bp, GGAACTATTCCTCCTGAGTTT). Bioinformatics analysis showed that the SCLRRK1 encoded a leucine-richrepeat(LRR)-like receptor protein kinase, belonging transmembrane secreted protein. RT-qPCR analysis of potato tissue expression pattern showed that the expression level of the ScmiR390-5 p was highest in the leaves, followed by roots, and relatively lowers in stem(terrestrial stem, tuber and stolon). Differently, the expression level of SCLRRK1 was the lowest in leaves and the highest in stems. The results under various abiotic stresses showed that the expression of ScmiR390-5 p and SCLRRK1 was negatively correlated, and ScmiR390-5 p was induced by NaCl stress. Compared with the control, the expression of ScmiR390-5 p was decreased and then increased slightly after treatment with ABA and 6-BA. The SCLRRK1 level increased continuously under 6-BA treatment, while the expression of SCLRRK1 increased first and then decreased under ABA treatment. The expression of ScmiR390-5 p reached the peak after treatment with GA3, PEG and IAA for 8 h. The expression of SCLRRK1 was induced by GA3,PEG and IAA, but the change trend was not correlated to ScmiR390-5 p. 【Conclusion】 SCLRRK1 had the amino acid sequence and structural basis of nucleic acid to encode LRR-like receptor protein kinase, which was the target gene of ScmiR390-5 p;ScmiR390-5 p/SCLRRK1 regulatory module had a significant role in potato tissues; ScmiR390-5 p responded to low temperature stress by inhibiting the expression of potato SCLRRK1 at the post-transcriptional level, while ScmiR390-5 p/SCLRRK1 regulated module played a role in salt and 6-BA stress response. The ScmiR390-5 p/SCLRRK1 regulatory module did not respond to ABA,GA3, IAA and PEG stress, and the ScmiR390-5 p and SCLRRK1 were regulated by the above signals at the transcriptional level,respectively.
引文
[1]谢洁,王明,李青,潘妃,熊兴耀,秦玉芝.植物miR390的研究进展.生物技术通报,2018,34(6):1-10.XIE J,WANG M,LI Q,PAN F,XIONG X Y,QIN Y Z.Research progress of plant miR390.Biotechnology Bulletin,2018,34(6):1-10.(in Chinese)
    [2]马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能.分子植物(英文版),2005,31(4):331-339.MA Y Y,GAN R,WANG N N.Biological functions of leucine-rich repeat class of receptor-like protein.Journal of Plant Physiology and Molecular Biology,2005,31(4):331-339.(in Chinese)
    [3]魏强,梁永宏,李广林.植物miRNA的进化.遗传,2013,35(3):315-323.WEI Q,LIANG Y H,LI G L.Evolution of miRNA in plants.Hereditas,2013,35(3):315-323.(in Chinese)
    [4]SUNKAR R,LI Y F,JAGADEESWARAN G.Functions of microRNAs in plant stress responses.Trends in Plant Science,2012,17(4):196-203.
    [5]KHRAIWESH B,ZHU J Y,ZHU J H.Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants.Biochimica Et Biophysica Acta,2012,1819(2):137-148.
    [6]SUNKAR R.MicroRNAs with macro-effects on plant stress responses.Seminars in Cell&Developmental Biology,2010,21(8):805-811.
    [7]XIA R,XU J,MEYERS B C.The emergence,evolution,and diversification of the miR390-TAS3-ARF pathway in land plants.Plant Cell,2017,29(6):1232-1247.
    [8]薄维平.木薯耐寒相关microRNA的差异表达分析[D].海口:海南大学,2010.BO W P.Analysis of differential expression of cold-tolerance related microRNA in cassava[D].Haikou:Hainan University,2010.(in Chinese)
    [9]党春艳.高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析[D].兰州:兰州大学,2013.DANG C Y.Expression anaysis of chilling-stress regulated minRNAs and targets in Chorispora bungeana[D].Lanzhou:Lanzhou University,2013.(in Chinese)
    [10]孙润泽,侯琦,章文乐.甜杨低温响应microRNAs的克隆与分析.基因组学与应用生物学,2011,30(2):204-211.SUN R Z,HOU Q,ZHANG W L.Cloning and analysis of the low temperature stress-responsive microRNAs from Populus suaveolens.Genomics and Applied Biology,2011,30(2):204-211.(in Chinese)
    [11]CHEN Q S,LI M,ZHANG Z C,TIE W W,CHEN X,JIN L F,ZHAI N,ZHENG Q X,ZHANG J F,WANG R,XU G Y,ZHANGH,LIU P P,ZHOU H N.Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.BMC Genomics,2017,18(1):62-77.
    [12]翟立红.玉米冠根和雄穗中microRNA及Argonaute基因表达的研究[D].武汉:华中农业大学,2013.ZHAI L H.Characterization and expression and analysis of microRNA and argonaute genes in crown roots and tassel of maize[D].Wuhan:Huazhong Agricultural University,2013.(in Chinese)
    [13]王宝山,邹琦.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报,2000,26(3):181-188.WANG B S,ZOU Q.Effects of NaCl stress on the tonoplast ATPase and PPase activity in roots,sheaths and blades of sorghum seedlings.Acta Phytophysiologica Sinica,2000,26(3):181-188.(in Chinese)
    [14]郭兆奎.烟草吸钾相关基因克隆与表达调控研究[D].哈尔滨:哈尔滨工业大学,2008.GUO Z K.The cloning and expression regulation of potassium uptake relative genes in Nicotiana tobacum[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)
    [15]王波.拟南芥和NaCl生植物灰绿藜液泡膜焦磷酸酶基因与TIR1基因表达相关性分析[D].乌鲁木齐:新疆大学,2007.WANG B.Analysis on gene expression correlation between vacuolar H+-pyrophosphatase and TRANSPORT INHIBITOR RESPONSE1(TIR1)in Arabidopsis thaliana and halophyte Chenopodium glaucum[D].Urumqi:Xinjiang University,2007.(in Chinese)
    [16]佐拉.野生大麦与栽培大麦耐Na Cl性的生理及遗传差异研究[D].杭州:浙江大学,2014.ZUO L.Physiological and genetic difference in salt stress tolerance in wild and cultivated barleys[D].Hangzhou:Zhejiang University,2014.(in Chinese)
    [17]吴冰月,宋普文,陈华涛.2个大豆RNA依赖的RNA聚合酶基因和的克隆与分析.南京农业大学学报,2014,37(3):27-34.WU B Y,SONG P W,CHEN H T.Cloning and expression pattern analysis of GmRDR6a and Gm RDR6b in soybean.Journal of Nanjing Agricultural University,2014,37(3):27-34.(in Chinese)
    [18]李贺,毛健鑫,戚华彩.草莓miR390基因及其启动子的鉴定与表达分析.果树学报,2014,31(3):362-336.LI H,MAO J X,QI H C.Identification and expression analysis of miR390 gene and its promoter from strawberry.Journal of Fruit Science,2014,31(3):362-336.(in Chinese)
    [19]YOON E K,YANG J H,LIM J,KIM S H,KIM S K,LEE W S.Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development.Nucleic Acids Research,2010,38:1382-1391.
    [20]DING Y F,YE Y Y,JIANG Z H,WANG Y,ZHU C.MicroRNA390 is involved in cadmium tolerance and accumulation in rice.Frontiers in Plant Science,2016,7(127):235-244.
    [21]刘凉琴,宋爱萍,张永侠.马蔺根系响应Cd胁迫的miRNA高通量测序分析.植物资源与环境学报,2016,25(3):1-11.LIU L Q,SONG A P,ZHANG Y X.High throughput sequencing analysis on miRNA in root of Iris lactea var.chinensis response to Cd stress.Journal of Plant Resources and Environment,2016,25(3):1-11.(in Chinese)
    [22]DMITRIEV A A,KUDRYAVTSEVA A V,BOLSHEVA N L,ZYABLITSIN A V,ROZHMINA T A,KISHLYAN N V,KRASNOVG S,SPERANSKAYA A S,KRINITSINA A A,SADRITDINOVA A F,SNEZHKINA A V,FEDOROVA M S,YURKEVICH O Y,MURAVENKO O V,BELENIKIN M S,MELNIKOVA N V.miR319,miR390,and miR393 are involved in aluminum response in flax(Linum usitatissimum L.).BioMed Research International,2017,2017:4975146.
    [23]LEE S C,KIM J Y,KIM S H,KIM S J,LEE K,HAN S K,CHOI H S,JEONG D H,AN G,KIM S R.Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice.Plant Science,2004,166(1):69-79.
    [24]JUNG E H,JUNG H W,LEE S C,HAN S W,HEU S,HWANG B K.Identification of a novel pathogen-induced gene encoding a leucinerich repeat protein expressed in phloem cells of Capsicum annuum.Biochimica et Biophysica Acta(BBA)-Gene Structure and Expression,2004,1676(3):211-222.
    [25]SUNKAR R,ZHU J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell,2004,16(8):2001-2019.
    [26]KHRAIWESH B,ZHU J Y,ZHU J H.Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants.BBA-Gene Regulatory Mechanisms,2012,1819(2):137-148.
    [27]MENG Y J,SHAO C G,MA X X,WANG H Z,CHEN M.Expression-based functional investigation of the organ-specific microRNAs in Arabidopsis.PLoS ONE,2012,7(11):e50870.
    [28]DING Y F,TAO Y L,ZHU C.Emerging roles of microRNAs in the mediation of drought stress response in plants.Journal of Experimental Botany,2013,64(11):3077-3086.
    [29]GARCIA D,COLLIER S A,BYRNE M E,MARTIENSSEN R A.Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway.Current Biology,2006,16(9):933-938.
    [30]CHO S H,CORUH C,AXTELL M J.miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens.The Plant Cell,2012,24(12):4837-4849.
    [31]MARIN E,JOUANNET V,HERZ A,LOKERSE A S,WEIJERS D,VAUCHERET H,NUSSAUME L,CRESPI M D,MAIZEL A.miR390,Arabidopsis TAS3 tasiRNAs,and their AUXIN RESPONSEFACTOR targets define an autoregulatory network quantitatively regulating lateral root growth.The Plant Cell,2010,22(4):1104-1117.
    [32]HANKS S K,QUINN A M,HUNTER T.The protein kinase family:Conserved features and deduced phylogeny of the catalytic domains.Science,1988,241(4861):42-52.
    [33]牛吉山.植物和小麦蛋白激酶的研究现状.西北植物学报,2003,23(1):143-150.NIU J S.Studies on plant and wheat protein kinases.Acta Botanica Boreali-Occidentalia Sinica,2003,23(1):143-150.
    [34]ULLRICH A,SCHLESSINGER J.Signal transduction by receptors with tyrosine kinase activity.Cell,1990,61(2):203-212.
    [35]STONE J M,WALKER J C.Plant protein kinase families and signal transduction.Plant Physiology,1995,108(2):451-457.
    [36]MIZUNO S,OSAKABE Y,MARUYAMA K,ITO T,OSAKABE K,SATO T,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K.Receptorlike protein kinase 2(RPK 2)is a novel factor controlling anther development in Arabidopsis thaliana.Plant Journal,2010,50(5):751-766.
    [37]XU Z S,XIONG T F,NI Z Y,CHEN X P,CHEN M,LI L C,GAO DY,YU X D,LIU P,MA Y Z.Isolation and identification of two genes encoding leucine-rich repeat(LRR)proteins differentially responsive to pathogen attack and salt stress in tobacco.Plant Science,2009,176(1):38-45.
    [38]HAN R,JIAN C,LV J Y,YAN Y,CHI Q,LI Z J,WANG Q,ZHANGJ,LIU X L,ZHAO H X.Identification and characterization of microRNAs in the flag leaf and developing seed of wheat(Triticum aestivum L.).BMC Genomics,2014,15:289.
    [39]余刚,李敬涛,孙新华,刘金亮,潘洪玉.四翅滨藜LRR类受体蛋白激酶基因在酵母中的表达及抗逆分析.吉林大学学报(理学版),2012,50(6):1257-1263.YU G,LI J T,SUN X H,LIU J L,PAN H Y.Expression and functional characterization of an Ac LRR gene from Atriplex canescens in yeast.Journal of Jilin University(Science Edition),2012,50(6):1257-1263.(in Chinese)
    [40]HONG S W,JON J H,KWAK J M,NAM H G.Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid,dehydration,high salt,and cold treatments in Arabidopsis thaliana.Plant Physiology,1997,113(4):1203-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700