用户名: 密码: 验证码:
固态电池研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of solid-state batteries
  • 作者:李杨 ; 丁飞 ; 桑林 ; 刘兴江
  • 英文作者:LI Yang;DING Fei;SANG Lin;LIU Xing-jiang;National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources;
  • 关键词:固态电池 ; 固态电解质 ; 界面
  • 英文关键词:solid-state battery;;solid electrolyte;;interface
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:中国电子科技集团公司第十八研究所化学与物理电源重点实验室;
  • 出版日期:2019-07-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.346
  • 语种:中文;
  • 页:DYJS201907001
  • 页数:5
  • CN:07
  • ISSN:12-1126/TM
  • 分类号:7-11
摘要
作为一种高安全、高比能量、长寿命的储能器件技术,固态电池已经成为新型化学电源领域的重要发展方向。开发兼具高离子电导率和良好加工性的固态电解质,解决电极与固态电解质界面相容性问题,提升固态电池循环稳定性是目前固态电池的研究热点。综述了固态电池的研究进展,包括固态电解质的设计与制备、固态电池界面修饰与改性研究,并展望了固态电池未来的发展方向。
        As a high-safety, high specific energy and long-life energy storage device technology, the solid-state batteries have become important development direction in the field of new chemical power sources. The recent researches of solid-state batteries have focused on the development of solid electrolytes with high ionic conductivity and good processability, solutions of interface compatibility between electrodes and solid electrolytes and improvement of cycle stability of solid-state batteries. The research progress of solid-state batteries was reviewed, including the design and preparation of solid electrolytes and modification of solid-state battery interfaces, and the future development of solid-state batteries was prospected.
引文
[1] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016,1(4):16030.
    [2] JANEK J, ZEIER W G. A solid future for battery development[J].Nature Energy, 2016, 9(1):16141-16144.
    [3] MA J, CHEN B B, WANG L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392:94-115.
    [4] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017,2(4):16103.
    [5]李杨,丁飞,桑林,等.全固态锂离子电池关键材料研究进展[J].储能科学与技术,2016,5(5):615-626.
    [6] FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11):1702657.
    [7] DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering:R:Reports, 2019, 136:27-46.
    [8] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1):459-465.
    [9] LIN D, YUEN P Y, LIU Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Advanced Materials, 2018, 30(32):e1802661.
    [10] LIU K, DING F, LIU J, et al. A cross-linking succinonitrile-based composite polymer electrolyte with uniformly dispersed vinyl-functionalized SiO2particles for Li-ion batteries[J]. ACS Applied Materials&Interfaces, 2016, 8(36):23668-23675.
    [11] WANG W, YI E, FICI A J, et al. Lithium ion conducting poly-(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5):2563-2573.
    [12] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10Ge P2S12into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016,301:47-53.
    [13] ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12and poly(vinylidene fluoride)induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39):13779-13785.
    [14] ZHANG J, ZANG X, WEN H, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10):4940-4948.
    [15] CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries:from"ceramic-in-polymer"to"poly mer-in-ceramic"[J]. Nano Energy, 2018, 46:176-184.
    [16] LI Y, DING F, XU Z, et al. Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte[J].Journal of Power Sources, 2018, 397:95-101.
    [17] ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. PNAS, 2017, 114(42):11069-11074.
    [18] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters,2015, 15(4):2740-2745.
    [19] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogelframework-derived high-performance composite polymer lithiumion electrolyte[J]. Angewandte Chemie International Edition, 2018,57(8):2096-2100.
    [20] HAN X. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2016, 16(5):572.
    [21] LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22):1606042.
    [22] TIAN Y, DING F, ZHONG H, et al. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithiummetal batteries[J]. Energy Storage Materials, 2018, 14:49-57.
    [23] LI Y, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20):6448-6455.
    [24] ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J].Journal of the American Chemical Society, 2016, 138:9385-9388.
    [25] ZHOU W, WANG Z, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4):e1805574.
    [26] WANG C, YANG Y, LIU X, et al. Suppression of lithium dendrite formation by using LAGP-PEO(LiTFSI)composite solid electrolyte and lithium metal anode modified by PEO(LiTFSI)in allsolid-state lithium batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(15):13694-13702.
    [27] LIU J, LIU T, PU Y, et al. Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4SEI layer[J]. RSC Advances, 2017, 7:46545-46552.
    [28] ZHONG H, SANG L, DING F, et al. Conformation of lithium-aluminium alloy interphase-layer on lithium metal anode used for solid state batteries[J]. Electrochimica Acta, 2018, 277:268-275.
    [29] CHEN R, ZHANG Y, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials&Interfaces, 2017, 9(11):9654-9661.
    [30] WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24):1801528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700