用户名: 密码: 验证码:
部分填充混凝土箱形截面钢桥墩的超低周疲劳裂纹萌生寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EXTREMELY LOW-CYCLE FATIGUE CRACK INITIATION LIFE PREDICATION OF PARTIALLY CONCRETE-FILLED STEEL BOX-SECTION BRIDGE PIERS
  • 作者:孙泱 ; 高圣彬
  • 英文作者:SUN Yang;GAO Shengbin;Department of Civil Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University;College of Civil Engineering,Shanghai Normal University;
  • 关键词:部分填充混凝土箱形截面钢桥墩 ; 低周疲劳裂纹萌生寿命 ; Ge模型 ; 参数化分析
  • 英文关键词:partially concrete-filled steel box-section bridge piers;;extremely low-cycle fatigue crack initiation life;;Ge model;;parametric study
  • 中文刊名:GJIG
  • 英文刊名:Steel Construction
  • 机构:上海交通大学船舶海洋与建筑工程学院土木工程系;上海师范大学建筑工程学院;
  • 出版日期:2019-06-22
  • 出版单位:钢结构(中英文)
  • 年:2019
  • 期:v.34;No.246
  • 基金:国家自然科学基金项目(51778361)
  • 语种:中文;
  • 页:GJIG201906006
  • 页数:7
  • CN:06
  • ISSN:10-1609/TF
  • 分类号:34-40
摘要
为研究部分填充混凝土箱形截面钢桥墩的超低周疲劳裂纹萌生寿命,通过与既有试验结果对比,确定所采用的钢材混合强化模型和混凝土损伤塑性模型的准确性,并且验证了Ge模型(基于塑性应变幅的累积损伤模型)非局部法在预测部分填充混凝土钢桥墩超低周疲劳寿命时的有效性。针对50%填充率的部分填充混凝土钢桥墩试件,利用Ge模型的非局部法,在3种不同加载形式的往复荷载作用下,研究翼缘宽厚比、正则化长细比等参数对超低周疲劳裂纹萌生寿命的影响,并基于参数化分析结果,拟合了预测该类钢桥墩超低周疲劳寿命的计算式。结果表明:钢材的混合强化模型和混凝土的损伤塑性模型能准确预测部分填充混凝土钢桥墩的滞回性能; Ge模型中的非局部法同样适用于部分填充混凝土钢桥墩的裂纹萌生寿命预测,基于参数化分析结果,提出了预测部分填充混凝土钢桥墩超低周疲劳裂纹萌生寿命的经验式。
        To obtain extremely low-cycle fatigue crack initiation life of partially concrete-filled steel box-section bridge piers,the numerical analysis of partially concrete-filled steel box-section bridge piers was carried out. The lateral load-lateral displacement hysteretic behaviors of partially concrete-filled steel box-section bridge piers were predicted by using combined hardening model as constitutive law of steel and damaged plasticity model as constitutive law of concrete,and extremely low-cycle fatigue crack initiation life was predicted by using non-local damage method in Ge model. A series of parametric studies was carried out to investigate the effect of width-to-thickness ratio of flange and slenderness ratio of the piers on crack initiation life of the steel box-section bridge piers with 50% filled-in concrete,which were subjected to three different kinds of cyclic loading patterns. The analytical results showed that the combined hardening model of steel and damaged plasticity model of concrete could accurately predict the hysteretic behavior of partially concrete-filled steel boxsection bridge piers,and non-local damage method in Ge model could be employed to accurately predict the crack initiation life of partially concrete-filled steel box-section bridge piers. On the basis of parametric analytical results,empirical formulas for predicting the crack initiation life of partially concrete-filled steel box-section bridge piers were proposed.
引文
[1]KUWAMURA H.Transition Between Fatigue and Ductile Fracture in Steel[J].Journal of Structural Engineering,1997,123(7):864-870.
    [2]SAKANO M,WAHAB M A.Extremely Low Cycle(ELC)Fatigue Cracking Behaviour in Steel Bridge Rigid Frame Piers[J].Journal of Materials Processing Technology,2001,118(1):36-39.
    [3]罗云蓉,王清远.建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J].四川建筑科学研究,2011,37(3):139-145.
    [4]KURODA M.Extremely Low Cycle Fatigue Life Prediction Based on a New Cumulative Fatigue Damage Model[J].International Journal of Fatigue,2002,24(6):699-703.
    [5]NIP K H,GARDNER L,DAVIES C M,et al.Extremely Low Cycle Fatigue Tests on Structural Carbon Steel and Stainless Steel[J].Journal of Constructional Steel Research,2010,66(1):96-110.
    [6]廖芳芳,王伟,陈以一.往复荷载下钢结构节点的超低周疲劳断裂预测[J].同济大学学报(自然科学版),2014,42(4):539-546.
    [7]ZHOU H,WANG Y,SHI Y,et al.Extremely Low Cycle Fatigue Prediction of Steel Beam-to-Column Connection by Using a MicroMechanics Based Fracture Model[J].International Journal of Fatigue,2013,48(2):90-100.
    [8]TATEISHI K,HANJI T,MINAMI K.A Prediction Model for Extremely Low Cycle Fatigue Strength of Structural Steel[J].International Journal of Fatigue,2007,29(5):887-896.
    [9]XUE L.A Unified Expression for Low Cycle Fatigue and Extremely Low Cycle Fatigue and Its Implication for Monotonic Loading[J].International Journal of Fatigue,2008,30(10):1691-1698.
    [10]GE H,KANG L.A Damage Index-Based Evaluation Method for Predicting the Ductile Crack Initiation in Steel Structures[J].Journal of Earthquake Engineering,2012,16(5):623-643.
    [11]GE H,KANG L,TSUMURA Y.Extremely Low-Cycle Fatigue Tests of Thick-Walled Steel Bridge Piers[J].Journal of Bridge Engineering,2013,18(9):858-870.
    [12]LEMAITRE J,CHABOCHE J L.Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1994.
    [13]石永久,王萌,王元清.结构钢材循环荷载下的本构模型研究[J].工程力学,2012,29(9):92-98.
    [14]LUBLINER J,OLIVER J,OLLER S,et al.A Plastic-Damage Model for Concrete[J].International Journal of Solids and Structures,1989,25(3):299-326.
    [15]LEE J,FENVES G L.Plastic-Damage Model for Cyclic Loading of Concrete Structures[J].Journal of Engineering Mechanics,1998,124(8):892-900.
    [16]KANG L,GE H.Predicting Ductile Crack Initiation of Steel Bridge Structures Due to Extremely Low-Cycle Fatigue Using Local and Non-Local Models[J].Journal of Earthquake Engineering,2013,17(3):323-49.
    [17]王跃东,高圣彬.内填部分混凝土箱形截面钢桥墩的滞回性能研究[J].四川建筑科学研究,2012,38(1):14-18.
    [18]高圣彬,徐旻洋,张大旭.内填部分混凝土箱形截面钢桥墩的延性影响参数[J].哈尔滨工业大学学报,2014,46(12):89-95.
    [19]池世粮,高圣彬.厚壁钢桥墩的超低周疲劳裂纹萌生寿命预测[J].河北工程大学学报(自然科学版),2016,33(1):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700